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ABSTRACT: 
 
Background: 
One of the fundamental building blocks for determining the burden of disease in 
populations is to reliably measure the level and pattern of mortality by age and sex. 
Where well-functioning registration systems exist, this task is relatively straightforward. 
Results from many civil registration systems, however, remain uncertain due to a lack of 
confidence in the completeness of death registration. Death Distribution Methods (DDM) 
are a suite of demographic methods which attempt to estimate the completeness of death 
reporting. While widely applied and used, the methods have at least three types of 
limitations. First, a wide range of variants of these methods have been applied in practice 
with little scientific literature to guide their selection. Second, the methods have not been 
extensively validated in real population conditions where violations of the assumptions of 
the methods most certainly occur. Third, DDMs do not generate uncertainty intervals.  
 
Methods and Findings:  
In this paper, we systematically evaluate the performance of 312 variants of DDM 
methods in three different validation environments where we know or have strong beliefs 
about the true level of completeness of death registration. Using these datasets, we 
identify three variants of the DDMs which generally perform the best. We also find that 
even these improved methods yield uncertainty intervals of at least +/- 12%. Finally, we 
demonstrate the application of the optimal variants in eight countries. 
 
Conclusions: 
There continues to be a role for partial vital registration data in measuring adult mortality 
levels and trends, but such results should only be interpreted alongside all other data 
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sources on adult mortality and the face validity of the resulting levels, trends and age-
patterns of adult death considered. 
 
 
INTRODUCTION: 
 
One of the fundamental building blocks for determining the burden of disease in 

populations is to reliably measure the level and pattern of mortality by age and sex. 

Simply knowing death rates at specific ages is of itself an important descriptor of the 

epidemiological situation in a population, given the strong age dependence of major 

diseases and injuries. After decades of effort and emphasis on improving survival among 

children, uncertainty about levels and trends in child mortality has been substantially 

reduced (although further improvements in knowledge are possible with better methods 

and wider access to survey and census data [1]. This is not the case with adult mortality, 

despite the focus on adult health outcomes in Millennium Development Goal (MDG) five 

(reducing maternal mortality) and MDG six (HIV, tuberculosis and malaria).  

 

Given the importance of estimating underlying mortality rates in order to more reliably 

describe the burden of disease in populations, particularly for populations where the 

routine registration of deaths functions poorly, methods have been developed to more 

successfully exploit the substantial amount of information on the survival of siblings that 

has been collected in large scale global survey programs [2]. For many developing 

countries, the mainstay for adult mortality measurement including the maternal mortality 

rate remains civil registration systems. Over 50 developing countries annually report 

death statistics to the World Health Organization or the United Nations Statistical Office 

[3,4]. Results from using civil registration systems, however, remain uncertain due to a 
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lack of confidence in the completeness of death registration and the accuracy of reports 

about age at death.  

 

Beginning in the 1960s and 1970s, methods were developed by demographers in an 

attempt to estimate the completeness of death reporting, either in civil registration 

systems, or in censuses and surveys [5-10]. These methods, known in the literature as 

Death Distribution Methods (DDM) are effectively based on a comparison of the age 

distribution of recorded deaths with the age distribution of the population in which the 

deaths occurred. In order to satisfy basic demographic theory about forces of population 

growth, the methods are dependent on assumptions about the stability of populations, 

population growth and the extent of age misreporting. These methods have been widely 

applied to census and vital registration data in the literature and are used for nearly 100 

countries by WHO to monitor adult mortality [11-16]. While widely applied and used, 

the methods have at least three types of limitations. First, a wide range of variants of 

these methods have been applied in practice with little scientific literature to guide 

selection of these variants. Second, the methods have not been extensively validated in 

real populations in the presence of measurement error. The only validation study [17] 

found large variation in results when applied to high-income countries where registration 

is thought to be complete. Third, DDM methods are grounded in mathematical not 

statistical relationships and thus do not generate uncertainty intervals for the estimated 

completeness of death registration.  
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In this paper, we systematically evaluate the performance of 312 variants of DDM 

methods. We use three different validation datasets where we know or have strong beliefs 

about the true level of completeness of death registration. Using these datasets, we 

identify improved DDM methods, characterize their uncertainty in different settings and 

then illustrate their applicability in developing countries.  

 

METHODS 

Three DDM Families 

The three families of methods used for assessing the completeness of death registration 

are generalized growth balance (GGB), synthetic extinct generations (SEG) and a hybrid 

of the two approaches GGBSEG (Figure 1). Appendix A provides a brief summary of 

these methods and the mathematical relationships that underlie them. All that these 

methods require as input are age distributions of population from two censuses and the 

deaths registered between the censuses by age. The methods are normally applied 

separately to males and females. In some cases, instead of death captured by vital 

registration systems, deaths reported in a census in the last 12 months have been used. All 

three families of methods ultimately yield a correction factor which can be multiplied by 

the observed adult death rates to get the corrected adult death rates (see Appendix A). 

SEG methods yield an estimate of the completeness of death registration relative to the 

two censuses. GGB methods and the related GGBSEG yield an estimation of the 

completeness of census 2 relative to census 1 as well as the completeness of death 

registration relative to the censuses. In theory, GGB and GGBSEG should perform better 

in the presence of differential completeness of the two censuses.  
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Based on practical experience, results of applying DDMs to population and death data for 

all adult age-groups can give findings that lack face validity. Demographers often age-

trim, namely drop the older and/or younger age-groups in the estimation of the correction 

factor for observed death rates. This practical approach has a sound theoretical basis: the 

effects of random fluctuations in the number of deaths or population in some age-groups, 

age misreporting and migration may vary substantially at older or younger age-groups. 

While age-trimming is widely practiced, there are no published studies which 

systematically evaluate the performance of different age-trims for the three families of 

DDMs. We have computed 78 age-trims for each of the three families. These 78 age-

trims were chosen to cover all possible age-trims where at least five contiguous age-

groups are used. We picked five as the minimum number of age groups required to give 

stable estimates for each of the methods. We identify each age-trim using the convention: 

family a-k where family is either GGB, SEG, or GGBSEG, a is the start of the age 

interval and k is the start of the last five year age-group included. In this article, we define 

“method” to mean the specific combination of family and age-trim, so effectively we are 

evaluating 3 families x 78 age-trims = 312 different DDM methods. Application of all 

methods has been in Stata [18].  

 

Creating or Identifying Validation Environments 

Choice of the optimal DDMs including age-trimming can only be undertaken in settings 

where the analyst has a reasonable knowledge of the true correction factor that needs to 

be applied to the observed death rate. The real challenge in this research area is creating 
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or identifying existing validation environments. We use three different environments 

each with their own advantages.  

i) Micro-simulation model of a population of 10 million followed for a period of 

150 years exposed to different levels of age-specific mortality, fertility and 

migration. The advantage of the micro-simulation environments is that the 

analyst controls all aspects of population dynamics and measurement error 

and thus truth is known with certainty.  

ii) US counties 1990-2000 provide a large set of populations with a large range 

in size, immigration and emigration rates where it is reasonable to assume that 

the relative completeness of vital registration relative to the 1990 and 2000 

censuses is close to 100%.  

iii) High-income economies as designated by the World Bank with populations 

greater than 5 million from 1950-2000. This group represents a much narrow 

range of migration rates, larger population sizes in countries with mature 

death registration systems.  

 

Population and Measurement Micro-Simulation 

Using micro-simulation to study the performance of DDMs requires two interconnected 

models: a population micro-simulation model and a measurement micro-simulation 

model. Figure 2a provides a schematic of the population model where individuals are 

exposed over time to age-specific risks of death, fertility and migration. Mortality and 

fertility rates were modeled based on trends in mortality and fertility in the US during the 

20th century. These were applied to an initial population age distribution from Sweden, 
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1751. The effect of fertility and mortality evolution over time on the population age-

structure is illustrated in Figure 2b. After an initial period of approximately 75 years, the 

age distribution evens out and becomes smooth again. Using this population model, we 

created 11 different population scenarios based on different levels of mortality and 

fertility. For each mortality-fertility scenario, we added three scenarios of net 

immigration with rates of 1, 10 and 50 per thousand, three scenarios of net emigration 

with rates 1, 10 and 50 per thousand, and one scenario with no migration. The age-

pattern of migration, however (illustrated in Figure 2c), is constant in each case of net 

migration and based on the average of a geographically diverse selection of countries 

with complete migration data as reported in the 1989 Demographic Yearbook [19]. In all, 

we generated 77 mortality-fertility-migration population scenarios with data on roughly 

10-15 million individuals in each. Various demographic characteristics of each 

population scenario are shown in Table 1. 

 

For each population scenario, we applied a measurement micro-simulation model where 

census 1 is taken at time t, registration of deaths occurs from time t to t+10 and census 2 

is taken at time t+10. Individuals have probabilities of being included in the two censuses 

of c1 and c2 and, if they die, of being registered of v1. Further, each individual’s age in 

each measurement is recorded subject to two types of age-misreporting: stochastic and 

systematic. Stochastic age-misreporting is captured as a random draw for each individual 

for each measurement from a normal distribution with mean zero and variance ߪଵ
ଶ. 

Systematic age-misreporting is captured by the function: ܽ௠ ൌ ܽ௧ ൅ ܽ௧ߚ where ܽ௠ is the 

misreported age, ܽ௧ is the true age, and ߚ is drawn from a normal distribution with a 
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mean ߤ and variance ߪଶ
ଶ. We vary the choice of c1, c2, v1, and the nine parameters 

defining the age-misreporting distributions ߪଵ
ଶ(c1), ߪଵ

ଶ(c2), ߪଵ
ଶ(vr), ߤ(c1), ߤ(c2), ߤ(vr), 

ଶߪ
ଶ(c1), ߪଶ

ଶ(c2), and ߪଶ
ଶ(vr), randomly generating 2000 different measurement scenarios 

for each of the 77 population scenarios. Table 2 summarizes the ranges for the nine 

parameters governing the measurement process that we have used in the simulations. 

Because we believe that age-misreporting is likely to be culturally determined, we have 

built strong correlations into the selection of age-misreporting variables between any 

given measurement micro-simulations (i.e. age misreporting in one measurement event 

such as census 1 is similar to age misreporting in another measurement event in the same 

population). The choice of the ranges sampled in Table 2 is based on our review of the 

literature [20,21]. In total, we have generated 154,000 sets of two censuses and death 

registration data over 10 years where we know the true death rate and the observed death 

rate and thus the correction factor that DDMs should generate.  

 

US Counties 1990 to 2000 

 Our second validation environment is US counties 1990 to 2000 where census age 

counts and death registration are available. We use the 2,072 counties or merged county 

units developed to assure a minimum population size in each aggregate [22-24]. Table 3 

summarizes the range of population sizes, mortality, fertility and migration observed 

across US counties. We assume that due to rigorous enforcement of census and 

registration laws that relative completeness of death registration is effectively 100% in all 

counties. To remove the effect of small numbers on these methods, we also present 

results for the 534 counties with a population greater than 100,000. Immigration and 
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emigration data are based data from the United States Internal Revenue Service 2007 [25], 

which tabulates the number of exemptions (an estimate of the number of individuals) that 

move from each county to every other county by matching the Taxpayer Identification 

Number and comparing zip codes of filing addresses from one year to the next.  

 

High-Income, Large Countries 1950-2000 

Our third validation environment, following the work of Thomas & Hill (2007) [17], is 

high-income countries with populations greater than 5 million from 1950-2000. We have 

identified 195 periods1 across 17 countries2 where census data are available at the 

beginning and end of the period and death registration data is available for part or all of 

the intermediate years. The data sources include the United Nations Demographic 

Yearbook [26] and the WHO mortality database [27]. We have applied the best 

performing method for each family of DDMs to all 195 combinations of censuses and 

death registration within the matching intercensal period, yielding 195 estimates of 

relative completeness for each DDM for these countries. For each of them, we assume as 

in the US counties that relative completeness of death registration is very close to 100% 

since social and legal structures in place for several decades mean that it is extremely 

difficult to dispose of a corpse without legal registration of death.  

 

                                                 
1 Periods were defined by pairing a census with each of the two subsequent censuses in time; this yielded 
two intercensal periods (for example, a census in 1970 would be paired with the 1980 census to create 
one period and the 1990 census to create a second period, the same would be done with 1980‐1990 and 
1980‐2000 and so on). As required to apply the methods, deaths during the intercensal period were 
averaged to create average annual deaths within each period. 
2 The 17 countries include: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Greece, Israel, Italy, Japan, Republic of Korea, Netherlands, Portugal, Saudi Arabia, Spain, Sweden, 
Switzerland, Great Britain, and United States of America. 
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Evaluation the Performance of Different DDMs 

Each method yields a correction factor which can be multiplied by the observed death 

rate to get a corrected death rate. Appendix A provides a formula for each of these 

correction factors by DDM family. For convenience and interpretation, we define 

‘relative completeness of death registration’ to be the inverse of the correction factor 

from each family. It is important to note that the assumptions in each family that are 

incorporated into the correction factor are different. Nevertheless, we ultimately want 

DDMs that yield the correction factor closest to the true value needed to correct the 

observed death rate for a population to equal the true death rate. For ease of 

communication, we prefer to evaluate DDMs using the inverse of the correction factor, or 

relative completeness of death registration (RC). For each validation environment, we 

compare estimated RC to the true or assumed RC. The difference between RC(estimated) 

and RC(true) is the error in the estimated relative completeness. We use average relative 

error as a metric of performance of a given method applied in a given validation 

environment. More formally: 

 

 average relative errortme = 
e

N

i ei

eitmei

N
trueRC

trueRCestimatedRC
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Where tm represents the age-trim t used from family m (GGB, SEG or GGBSEG), i 

indexes each simulated population, county or country from validation environment e and 

N is the total number of such populations in that environment. We choose optimal DDMs 
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for each family of methods by minimizing the average relative error in the three 

validation datasets.  

 

Application to Selected Developing Countries 

As with the high income countries, in applying the methods to developing countries we 

create periods by pairing each census with the two subsequent censuses. We then apply 

the optimal age-trims3 for each of the three families of methods to the resulting census 

pairs and the intercensal average annual deaths from death registration or census/survey 

data on household deaths4 found in the UN Demographic Yearbooks [26], IPUMS [28], 

and WHO [27] mortality databases for 1950-2000. In total, this yielded roughly 1,000 

estimates of each optimal DDM. For illustrative purposes, we present our results in detail 

for 6 developing countries and contrast them with results from 2 high income countries.  

 

RESULTS 

The performance of all possible age-trims for the three families of DDMs in the three 

validation datasets is summarized in Table 4 (which lists the top 5 and worst five age-

trims for each method). The full results for every age-trim can be found in Appendix 

Table 1. The results in all validation datasets demonstrate high variation in performance 

across different age-trims. This variation ranges from 4.8% to 142% in terms of average 

                                                 
3 In some cases, the age groups in the data did not allow for the use of the optimal age‐trim. For example, 
if the open interval for deaths was 70+, we could not apply any age trims that went above the 65‐69 year 
age group. In these cases, we applied the best performing age‐trims possible given the age groups present 
in the dataset. 
4 When the death data available was from censuses or surveys which asked about household deaths in the 
last 12 months, we computed average annual deaths by calculating the death rates at the time of the 
second census (or survey), and applied them to the average person‐years lived assuming geometric 
population growth in the intercensal period.  
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relative error. Clearly the key determinants of the performance of each family of DDMs 

vary profoundly according to which age groups are included in the estimation process. 

There is much greater variation across age-trims than there is across families of DDMs. 

As Table 4 shows, we have computed the average relative error for each age-trim in each 

validation environment and ranked the trims within each environment. The minimum 

average rank across the three environments yields the best performing method. For SEG 

the optimal age-trim is SEG 60-80; this was the best in the simulated populations, U.S. 

counties and high income countries. For GGB, the results across validation datasets 

appear to be more mixed, but GGB 30-80 performed best on average. Finally, GGBSEG 

50-70 performed best on average across the three validation environments. 

 

Given the closest test to national application is the high-income countries, all three 

optimal versions of the three DDM families perform relatively well with similar average 

relative error in this setting. GGB 30-80 does slightly better than the optimal age-trims in 

the other families. Of note, the previously reported sensitivity of SEG to migration in 

high-income countries [17] appears to be largely attenuated in SEG 60-80. We focus on 

the three optimal methods, SEG 60-80, GGB 30-80 and GGBSEG 50-70 for the rest of 

the analysis.  

 

The simulation dataset provides an opportunity to investigate how error and estimated 

relative completeness are associated with factors such as the levels and trends in 

mortality, fertility, migration and age-misreporting. Table 5 shows regression results of 

error in relative completeness for each of the three optimal methods regressed on the 6 
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age-misreporting variables (stochastic and systematic age-misreporting variables for each 

of the two censuses and the vital registration system) and migration rate with and without 

fixed effects for the 77 population scenarios. Overall, the regression results show large 

effects in all three optimal trims for age-misreporting. Stochastic age-misreporting has an 

important effect but the effect of systematic age-misreporting is much larger, judging by 

the t-statistics. Of particular importance are differences in the systematic age-

misreporting variables across the two censuses and vital registration (separate regressions 

not shown). The greater the difference in age misreporting across the censuses and VR, 

the greater the error. Adding population fixed effects increases the R-squared of the 

regression, indicating that the parameters defining the population (mortality, fertility and 

migration) along with age-misreporting together explain a total of 78.1%, 94.4% and 

90.5% percent of the variation in the error of the SEG 60-80, GGB 30-80 and 

GGBSEG 50-70 methods, respectively. With fixed effects, migration is not significant as 

expected since the 77 fixed effects capture the unique effects of the combination of 

mortality, fertility and migration. The coefficient on migration in the model without fixed 

effects is relatively small in comparison to the error generated by the age-misreporting 

parameters. In part, this result may be due to the selection of the optimal age-trims which 

tend to minimize the impact of migration already.  

 

We also analyzed the performance of the age-trims in the simulations according to level 

of migration. Though the best performing age-trims as measured by average relative error 

are consistent across varying levels of migration for SEG and GGBSEG, they are not so 

for GGB. For SEG and GGBSEG, the age-trim 60-80 has the smallest average relative 
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error in all migration scenarios. For GGB, in the absence of net migration, the age-trim 5-

65 has the smallest average relative error, while the age-trims 45-65, 50-70 and 40-65 are 

the better performers under positive or negative net migration scenarios. 

 

Uncertainty in the estimated relative completeness is large. Figure 3 shows in the three 

validation datasets the relationship between the estimated relative completeness and the 

true relative completeness for the optimal method in each of the three families. The 

variation in estimated relative completeness increases as true coverage approaches 100%. 

When the error in relative completeness is expressed in relative terms by dividing by the 

true level of relative completeness, error remains constant as a function of true 

completeness (not shown). The uncertainty in the simulated datasets and the US counties 

is similar but it is smaller in large high-income populations which may reflect larger 

numbers, lower migration rates and smaller age-misreporting at the national level.  

 

Figure 4 shows 8 examples of the application of the three optimal methods to select 

countries over time. In each panel, for each pair of censuses and vital registration data, 

we show the results of the three methods in terms of relative completeness. For 

comparison we have also compared registered deaths 0-4 to estimates of 0-4 deaths based 

on systematic review of all data sources [1]. We include graphs from two high income 

countries, Canada and Switzerland, to show that these methods can be consistent and, as 

we assume death registration is complete in these countries, accurate. The graph for 

Mexico suggests that vital registration, at least for adults, has been relatively complete 

since 1970, but there is clearly more noise in these estimates than for the high-income 
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countries shown. The Philippines shows similarly noisy estimates, with both 

improvement and decline suggested. Knowing the uncertainty inherent in these methods, 

however, it is unclear that these are true trends. In Thailand, registration for adults is 

estimated to be between 80 and 90 percent complete during the 1980s and 1990s, and the 

methods are fairly congruous. Paraguay is another example where registration 

completeness has been relatively constant over time and where the methods seem to be 

fairly consistent with one another. Tunisia illustrates an example where death registration 

has clearly improved over time, from nearly 50% in 1960 to complete by 1980. Finally, 

the graph for Korea reminds us that these methods are applicable not only to data from 

vital registration systems, but also can be applied to survey sources of death data. Across 

all the countries, it is not clear that any one family of DDMs is best or most consistent, 

although SEG appears to be slightly more stable. 

 

DISCUSSION 

This first systematic analysis of the three families of DDMs for the estimation of the 

completeness of death registration demonstrates that the choice of age-trimming has a 

profound effect on the performance of these methods. Based on three different validation 

datasets, we believe SEG 60-80, GGB 30-80, and GGBSEG 50-70 are the best methods 

that can be currently used to estimate relative completeness of death registration. We 

recommend that analysts apply all three methods and look at the consistency of results. 

The combination of the three optimal DDMs will yield much better results than current 

practice of application of DDMs without optimal age-trimming. Selection of optimal age-
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trims has also substantially reduced the bias associated with migration reported in 

previous work.  

 

Published studies and national statistical reports apply these methods and provide results 

without uncertainty bounds. In the three different validation environments, estimated 

relative completeness for the best variants has a minimum average relative error of 4.8%, 

and this can be as high as 11.3% depending on the method used. It appears that the 

underlying stochastic processes in censuses and death registration, including age-

misreporting, have led to a component of uncertainty that cannot be eliminated. While 

usage of partial death registration is useful for estimating mortality levels among adults, 

the application of DDMs, even from the optimal age trims we have suggested here, 

should be interpreted with considerable caution; relative completeness of registration is 

likely to be at least +/- 12 around the estimated level, and perhaps considerably more. 

This level of uncertainty is likely to mean that while DDM correction methods could be 

useful in estimating levels, they are unlikely to be as useful for estimating mortality 

change. For example, Lopez and colleagues [29] estimate that 45q155 for females in 

Paraguay declined by 8 per 1,000 over the period of 1990-2001. According to our 

analysis, a +/-12 point uncertainty interval around the SEG 60-80 estimated relative 

completeness of 74% for Paraguay in the late 1990s would yield an uncertainty interval 

around predicted 45q15 for females of between 93 and 127 per 1,000, a spread of 34 

points per 1,000. Detecting the decline in adult mortality that is estimated to have 

                                                 
5 45q15 is life table notation indicating the probability that a 15 year old would die by age 60 if mortality 
rates of the reference period (in this example, the late 1990s) were constant. It is a commonly used 
summary measure of adult mortality. 
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happened in Paraguay during this time period would not be possible given the uncertainty 

inherent in the DDMs. 

 

Our working hypotheses in applied work have been that (1) the completeness of adult 

death registration is always greater than or equal to the completeness of child death 

registration given the greater ease of disposing of infant or child remains without notice 

of legal authorities compared to adult remains. In addition, we have operated under the 

assumption that (2) the evolution of social and public institutions leads to stronger civil 

registration that will improve both adult and child death registration and thus generate a 

high correlation between adult and child completeness. Application of our optimal DDMs, 

however, provides indications that assumption (2) may not be entirely accurate. There are 

a number of developing countries in Latin America and South-East Asia where adult 

registration appears to be complete, but child registration varies from complete to less 

than 50%. There may well be considerable variation across countries in the time lag 

between achieving complete or near complete adult death registration and the same for 

children.  

 

Given the residual uncertainty in optimal DDMs, there may be a bigger role for direct 

measurement of relative completeness through surveys or censuses. Two methods 

deserve broader consideration. First, some surveys such as Thailand’s 1995-1996 Survey 

of Population Change [30] have asked households about deaths in the last 12 months and 

whether the death was registered. It is possible that in countries where death registration 

is legally required, the reported levels of death registration may be inflated. Nevertheless, 
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this avenue of measurement could be further refined. Household respondents could be 

asked if deaths also occurred in hospital, for example. The number of hospital deaths 

recorded by the health information system could be examined to cross-validate household 

responses. A second strategy would be to apply capture-recapture or dual-record methods 

[31,32] to civil registration deaths and deaths reported by households in a time period 

prior to a survey or census. Capture-recapture methods require matching of individual 

deaths so this effort can be time consuming. Direct measurements of completeness using 

this approach have been used in the Chinese Disease Surveillance Point System [33] and 

at Demographic Surveillance Sites in Kenya [34], as well as with recent work in Thailand 

with the most recent 2006 Survey of Population Change [35]. More experience with both 

types of approaches may strengthen our capacity to track the completeness of death 

registration.  

 

The analysis in simulated populations of the profound impact of stochastic and systematic 

age-misreporting has a more general implication. Preston and others [36] have pointed 

out that even in complete death registration systems, age-misreporting can bias the 

measurement of death rates by age. In a typical developing country with a young age-

structure, even stochastic age-misreporting will lead to over-estimation of death rates at 

younger ages and under-estimation of death rates at older ages. The sensitivity of 

completeness estimates from DDMs to age-misreporting compounds this problem. There 

will need to be renewed efforts to measure the extent of stochastic and systematic age-

misreporting and provide tools for correcting the bias in observed death rates. This bias is 

likely present in all available national life tables at present.  
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Given the increasing availability of other measurements of adult mortality such as 

corrected sibling survival, corrected death registration data should be interpreted in the 

context of all other data sources. In the arena of child mortality, it is now standard 

practice [1] to examine all data sources for a country over time and generate a composite 

estimate of levels of and trends in child mortality. We believe with improved DDMs, 

there continues to be a role for partial vital registration data in measuring adult mortality 

levels and trends. But such results should only be interpreted alongside all other data 

sources on adult mortality and the face validity of the resulting levels, trends and age-

patterns of adult death considered.  
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Appendix A 

Generalized Growth Balance 

The Generalized Growth Balance (GGB) method extends the Growth Balance Equation 

developed by Brass in 1975. The original method employs the demographic relationship  

 

ܰሺܽሻ
ܰሺܽ൅ሻ ൌ ݎ ൅   

ሺܽ൅ሻܦ
ܰሺܽ൅ሻ 

 

where ܰሺܽሻ is the number of people turning age a in the interval under observation, ܰሺܽ൅ሻ is 

the total population above age ܽ, ݎ is the stable population growth rate, and ܦሺܽ൅ሻ is the total 

deaths at age ܽ and over. Generalizing the equation to non-stable populations, i.e. populations 

with non-constant growth, Hill estimated an ݎ for each age group, yielding 

 

ܰሺܽሻ
ܰሺܽ൅ሻ ൌ ሺܽ൅ሻݎ ൅   

ሺܽܦ ൅ሻ
ܰሺܽ ൅ሻ 

 

The method requires population by age at two points in time and the average annual deaths in 

between those points. If we have incomplete censuses and incomplete death registration, then we 

cannot observe ܰ1ሺܽሻ, the true population of people aged ܽ at the first census, ܰ2ሺܽሻ, the true 

population of peopled aged ܽ at the second census, or ܦሺܽሻ, the true number of deaths of people 

aged a in between the first and second censuses. We instead observe ܰ1ைሺܽሻ, ܰ2ைሺܽሻ, and 

 ைሺܽሻ, whereܦ

 

ܰ1ைሺܽሻ ൌ ܿଵ כ ܰ1 
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ܰ2ைሺܽሻ ൌ ܿଶ כ ܰ2 

ைሺܽሻܦ ൌ ଵݒ כ  ሺܽሻܦ

 

In the above equations, ܿଵ is the completeness of the first census, ܿଶ is the completeness of the 

second census and ݒଵ is the completeness of death registration. Substituting these expressions 

into the Generalized Growth Balance equation allows us to estimate the relative completeness of 

the death registration to the censuses. After substitution and simplification, the equation becomes 

 

ܰைሺܽሻ
ܰைሺܽ൅ሻ ൌ

1
ݐ log

ܿଵܰ2ைሺܽ൅ሻ
ܿଶܰ1ைሺܽ൅ሻ  ൅ √ܿଵܿଶ

ଵݒ

ைሺܽܦ ൅ሻ
ܰைሺܽ ൅ሻ 

 

By pulling the ratio ௖భ
௖మ

 out of the growth rate term and rearranging, we obtain 

 

ܰைሺܽሻ
ܰைሺܽ൅ሻ െ ைሺܽݎ ൅ሻ ൌ

1
ݐ log

ܿଵ

ܿଶ
 ൅ √ܿଵܿଶ

ଵݒ

ைሺܽܦ ൅ሻ
ܰைሺܽ ൅ሻ 

 

which defines a line with intercept ଵ
௧

log ௖భ
௖మ

 and slope √௖భ௖మ
௩భ

. Least squares regression can estimate 

both the slope and intercept of this line and thus the relative completeness of the censuses and a 

correction factor for the mortality rates. 
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Synthetic Extinct Generations 

 

The method of extinct generations, a precursor to the Synthetic Extinct Generations method 

(SEG), estimates the number of people aged ܽ at time ݐ, ௧ܰሺܽሻ by employing the following 

demographic relationship between ௧ܰሺܽሻ and ܦ௧ሺܽሻ, the number of deaths of people aged ܽ at 

time ݐ. 

 

௧ܰሺܽሻ ൌ ௧ሺܽሻܦ ൅ ௧ାଵሺܽܦ ൅ 1ሻ ൅ ௧ାଶሺܽܦ ൅ 2ሻ ൅ ڮ ൌ  න ݔሻ݀ݔ௧ା௫ି௔ሺܦ
ஶ

௔
 

 

We can arrive at ௧ܰሺܽሻ either directly or indirectly by counting each person contributing to 

௧ܰሺܽሻ when he or she dies [37]. The method of extinct generations is impractical for those who 

need the resulting death information now. Instead of waiting for cohorts to go extinct, SEG 

estimates the number of future deaths in the cohort by adjusting ܦ௧ at all ages above a by a 

growth factor. The new approach yields the equation 

 

௧ܰሺܽሻ ൌ ׬  ׬ሻ݁ݔ௧ሺܦ ௥ሺ௨ሻௗ௨ೣ
ೌ ஶݔ݀

௔ , 

 

where the right hand side of the equation represents the estimated deaths at older ages to the 

current cohort ௧ܰሺܽሻ by using current deaths at each age ܦ௧ሺݔሻ from death registration systems 

and age specific growth rates ݎሺݑሻ that can be obtained from comparing cohort sizes across two 

censuses. Dividing the estimated ௧ܰሺܽሻ calculated using the right hand side of the equation by 

the ௧ܰሺܽሻ observed directly from the census gives the relative completeness ratio ௩భ
௖భ

.  
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Generalized Growth Balance-Synthetic Extinct Generations 

 

If the two censuses used to estimate the age-specific growth rates in SEG have different levels of 

completeness, then SEG’s final estimate of the correction factor will be biased. The combined 

GGB-SEG method attempts to correct this bias. Hill and Choi proposed multiplying the 

population numbers from the first census by the ௖మ
௖భ

  derived from the intercept of the Generalized 

Growth Balance equation. After this adjustment, the two censuses are complete with respect to 

each other and SEG will produce a less biased estimate of the correction factor. 
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Tables 
 

Scenario 
Crude Birth 

Rate per 1000 

Life 
Expectancy at 

Birth 45q15 

Population 
at Census 1 
(in millions) 

Population 
at Census 2  

(in 
millions) 

Intercensal 
Deaths  

(in 
millions) 

1 7.55 75.17 0.106 15.0 15.3 1.48 
2 8.83 72.47 0.144 12.0 13.1 1.13 
3 8.77 73.01 0.135 12.6 13.7 1.19 
4 7.78 74.54 0.115 14.6 15 1.42 
5 8.42 72.88 0.138 12.4 13.5 1.18 
6 9.09 71.85 0.154 11.2 12.3 1.05 
7 8.78 72.80 0.139 11.6 12.4 1.10 
8 8.58 72.91 0.139 11.7 12.5 1.11 
9 7.62 75.00 0.109 14.3 14.9 1.41 
10 7.74 74.88 0.110 14.2 14.9 1.41 
11 8.97 72.35 0.148 11.1 12 1.06 

              
Table 1: Mortality and Fertility Levels and Trends in the Simulations.   
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  Mean Min Max   
Completeness of Census 1 0.95 0.90 1.00   
Completeness of Census 2 0.95 0.90 1.00   
Completeness of VR 0.65 0.30 1.00   
β in Census 1 0.00 -0.07 0.07   
σ1

2 in Census 1 1.99 0.00 2.89   
β in Census 2 0.00 -0.07 0.08   
σ1

2 in Census 2 1.99 0.00 2.86   
β in VR 0.00 -0.06 0.07   
σ1

2 in VR 1.99 0.00 2.76   
          
Notes:          
VR = Vital Registration         
          
Stochastic age-misreporting is captured as a random draw for each individual for each  
measurement from a normal distribution with mean zero and variance σ1

2   
          
Systematic age-misreporting is captured by the function am=at+at*β where am  is the  
misreported age, at is the true age, and β is drawn from a normal distribution.    
          
Table 2: Simulation Measurement Model         
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  Years Mean Min Max 
Population Size 2000 401,245 100,224 9,519,338 
Exponential Growth Rate 1990-2000 0.015 -0.013 0.103 
Emmigration (total 
outmigrants) 1995-2000 22,711 547 1,190,823 
Immigration (total 
inmigrants) 1995-2000 22,711 226 770,306 
Net Migration 1995-2000 0 -420,571 193,489 
Life Expectancy at Birth 1990-2000 78 70 82 
45q15 1990-2000 0 0 0 
Total Fertility Rate 2000 2.01 0 3.62 
          
Table 3: Summary of Demographic Characteristics of U.S. Counties with  
Population Greater than 100,000 in 2000       
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  Simulations US Counties High-Income Countries Average   
Age Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank 

GGB                         
30to80   0.091 18   0.126 3   0.048 1   0.088 7.3 
25to80   0.091 20   0.125 2   0.048 2   0.088 8.0 
35to80   0.091 19   0.128 6   0.049 4   0.089 9.7 
20to80   0.092 22   0.126 4   0.048 3   0.089 9.7 
15to80   0.092 27   0.127 5   0.049 5   0.089 12.3 

…                        … 
25to45   0.647 78   0.358 68   0.167 64   0.391 70.0 
10to35   0.210 59   0.454 75   0.279 77   0.314 70.3 
15to40   0.393 72   0.387 69   0.232 73   0.338 71.3 
15to35   0.310 68   0.451 74   0.318 78   0.360 73.3 
20to40   0.520 76   0.407 72   0.233 74   0.387 74.0 

SEG                         
60to80   0.097 1   0.119 1   0.050 1   0.089 1.0 
55to80   0.105 2   0.133 2   0.052 2   0.097 2.0 
55to75   0.111 3   0.143 3   0.054 3   0.103 3.0 
50to80   0.114 4   0.152 4   0.054 4   0.107 4.0 
50to75   0.122 5   0.164 5   0.056 6   0.114 5.3 

…                        … 
5to40   0.540 74   1.078 74   0.139 74   0.586 74.0 

10to30   0.571 75   1.138 75   0.151 76   0.620 75.3 
5to35   0.579 76   1.176 76   0.150 75   0.635 75.7 
5to30   0.621 77   1.290 77   0.161 77   0.691 77.0 
5to25   0.665 78   1.417 78   0.174 78   0.752 78.0 

GGBSEG                         
50to70   0.113 6   0.114 3   0.061 6   0.096 5.0 
50to75   0.111 5   0.115 10   0.059 5   0.095 6.7 
50to80   0.110 4   0.117 12   0.058 4   0.095 6.7 
45to75   0.117 8   0.114 4   0.062 8   0.097 6.7 
45to70   0.120 9   0.113 2   0.064 9   0.099 6.7 

…                        … 
5to40   0.325 74   0.339 74   0.227 74   0.297 74.0 

10to30   0.341 75   0.374 76   0.244 75   0.320 75.3 
5to35   0.347 76   0.372 75   0.245 76   0.321 75.7 
5to30   0.370 77   0.412 77   0.264 77   0.349 77.0 
5to25   0.394 78   0.454 78   0.284 78   0.377 78.0 

                         
Table 4: Average Relative Error and Rank for the Top 5 and Worst 5 of 78 Possible  
Age-Trims of GGB, SEG, and GGBSEG in the Simulations, U.S. Counties and High-Income   
Countries Sorted by Average Rank               
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    GGB       SEG       GGBSEG       
  Variables est. 95% CI   t est. 95% CI   t est. 95% CI   t 
            
(a) Without Fixed Effects                       
  β in Census 1 -13.00 -13.03 -12.98 -1185.6 -9.81 -9.86 -9.76 -399.9 -15.22 -15.25 -15.19 -986.3 
  σ1

2 in Census 1 -0.02 -0.03 -0.02 -27.4 0.00 0.00 0.01 1.3 -0.04 -0.04 -0.04 -31.8 
  β in Census 2 5.21 5.19 5.23 464.0 5.78 5.74 5.83 230.3 1.52 1.49 1.55 96.3 
  σ1

2 in Census 2 0.02 0.02 0.02 24.6 0.02 0.02 0.02 10.0 0.02 0.02 0.03 19.3 
  β in VR 8.68 8.65 8.70 769.6 4.84 4.79 4.89 191.8 14.10 14.07 14.13 889.0 
  σ1

2 in VR 0.00 0.00 0.01 4.7 -0.02 -0.03 -0.02 -12.4 0.02 0.01 0.02 12.2 
  Migrants per 1000 0.00 0.00 0.00 -237.8 0.00 0.00 0.00 284.1 0.00 0.00 0.00 -40.9 
  Constant 0.03 0.03 0.03 50.2 0.02 0.02 0.02 14.8 0.05 0.04 0.05 58.0 
  R2 0.91       0.63       0.89       
  RMSE 0.03       0.07       0.05       

(b) Including Fixed Effects for Population Scenario                   
  β in Census 1 -13.00 -13.02 -12.99 -1484.0 -9.81 -9.85 -9.78 -521.4 -15.22 -15.25 -15.19 -1069.5 
  σ1

2 in Census 1 -0.02 -0.03 -0.02 -34.3 0.00 0.00 0.01 1.7 -0.04 -0.04 -0.04 -34.4 
  β in Census 2 5.21 5.19 5.23 580.8 5.78 5.75 5.82 300.3 1.52 1.49 1.55 104.4 
  σ1

2 in Census 2 0.02 0.02 0.02 30.7 0.02 0.02 0.02 13.1 0.02 0.02 0.03 20.9 
  β in VR 8.68 8.66 8.69 963.3 4.84 4.80 4.87 250.1 14.10 14.07 14.13 964.0 
  σ1

2 in VR 0.00 0.00 0.01 5.8 -0.02 -0.03 -0.02 -16.1 0.02 0.01 0.02 13.2 
  Migrants per 1000 0.00 0.00 0.00 -65.7 0.01 0.01 0.01 79.1 0.00 0.00 0.00 -12.8 
  Constant 0.03 0.03 0.03 36.4 0.02 0.02 0.02 12.3 0.03 0.03 0.04 28.6 
  R2 0.94       0.78       0.90       
  RMSE 0.03       0.06       0.04       
                            
Notes: Stochastic age-misreporting is captured as a random draw for each individual from a normal distribution with mean zero and variance σ1

2.    
Systematic age-misreporting is captured by the function am=at+at*β where am  is the misreported age, at is the true age, and β is drawn from a normal 
distribution.  

Table 5: Coefficients from Regression of Error on Age Misreporting and Migration in the Simulations. This table shows the   
relationship between levels of age-misreporting and migration and error in relative completeness (RC) in the simulation environment both in the   
absence (a) and presence (b) of fixed effects indicating the combination of mortality, fertility and migration rates that define a population scenario.  
Error is calculated by subtracting true RC from estimated RC using the optimal variant in the simulated environment for each of the 3 families. 
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GGB                          
  Simulations US Counties High-Income Countries Average    
Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank  

30to80   0.091 18   0.126 3   0.048 1   0.088 7.3  
25to80   0.091 20   0.125 2   0.048 2   0.088 8.0  
35to80   0.091 19   0.128 6   0.049 4   0.089 9.7  
20to80   0.092 22   0.126 4   0.048 3   0.089 9.7  
15to80   0.092 27   0.127 5   0.049 5   0.089 12.3  
35to75   0.082 8   0.143 17   0.051 12   0.092 12.3   
30to75   0.084 11   0.139 14   0.051 13   0.091 12.7   
5to80   0.092 23   0.130 9   0.049 8   0.090 13.3   
25to75   0.086 12   0.139 13   0.051 15   0.092 13.3   
40to80   0.092 24   0.131 10   0.049 7   0.091 13.7   
10to80   0.092 28   0.129 8   0.049 6   0.090 14.0  
40to75   0.081 5   0.150 24   0.051 14   0.094 14.3  
35to70   0.082 6   0.148 21   0.053 19   0.094 15.3  
20to75   0.088 15   0.142 15   0.052 18   0.094 16.0  
55to80   0.099 33   0.128 7   0.051 11   0.093 17.0  
50to80   0.096 31   0.132 11   0.049 9   0.092 17.0  
45to80   0.093 29   0.133 12   0.049 10   0.092 17.0  
15to75   0.090 17   0.143 16   0.053 20   0.095 17.7  
45to75   0.082 7   0.157 29   0.052 17   0.097 17.7  
40to70   0.079 4   0.158 31   0.053 21   0.097 18.7   
30to70   0.086 14   0.146 19   0.053 23   0.095 18.7   
50to75   0.083 10   0.160 34   0.052 16   0.098 20.0   
60to80   0.104 38   0.122 1   0.054 24   0.093 21.0   
45to70   0.078 1   0.170 40   0.053 22   0.100 21.0   
5to75   0.091 21   0.147 20   0.055 27   0.098 22.7  
10to75   0.092 26   0.144 18   0.054 25   0.097 23.0  
55to75   0.086 13   0.159 33   0.054 26   0.100 24.0  
35to65   0.090 16   0.149 22   0.064 35   0.101 24.3  
40to65   0.082 9   0.154 28   0.065 36   0.101 24.3  
50to70   0.078 2   0.179 45   0.056 29   0.105 25.3  
25to70   0.092 25   0.151 25   0.055 28   0.099 26.0  
45to65   0.078 3   0.170 39   0.067 38   0.105 26.7  
20to70   0.097 32   0.158 30   0.057 30   0.104 30.7  
30to65   0.099 34   0.154 27   0.064 34   0.106 31.7   
15to70   0.101 35   0.159 32   0.059 31   0.107 32.7   
40to60   0.095 30   0.150 23   0.085 46   0.110 33.0   
10to70   0.103 37   0.161 35   0.061 32   0.108 34.7   

                            
Appendix Table 1a: Average Relative Error and Rank for All Possible Age-Trims   
of GGB in the Simulations, U.S. Counties and High-Income  Countries  
Sorted by Average Rank                  
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GGB                          
  Simulations US Counties High-Income Countries Average    
Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank  

5to70   0.102 36   0.164 36   0.063 33   0.110 35.0   
35to60   0.111 40   0.152 26   0.075 41   0.113 35.7   
25to65   0.110 39   0.165 37   0.067 37   0.114 37.7  
20to65   0.120 41   0.176 43   0.070 39   0.122 41.0  
15to65   0.126 43   0.176 42   0.072 40   0.125 41.7  
30to60   0.130 45   0.168 38   0.077 43   0.125 42.0  
10to65   0.129 44   0.178 44   0.075 42   0.127 43.3  
5to65   0.124 42   0.182 46   0.077 44   0.128 44.0  
25to60   0.149 46   0.187 47   0.080 45   0.139 46.0  
35to55   0.156 48   0.176 41   0.094 51   0.142 46.7  
20to60   0.164 50   0.202 49   0.086 47   0.151 48.7  
15to60   0.173 53   0.200 48   0.090 48   0.154 49.7  
10to60   0.172 52   0.203 50   0.093 50   0.156 50.7  
5to60   0.158 49   0.208 52   0.096 52   0.154 51.0  
30to55   0.192 56   0.206 51   0.091 49   0.163 52.0  
25to55   0.225 61   0.230 53   0.098 53   0.184 55.7  
5to55   0.194 57   0.250 57   0.117 58   0.187 57.3  
20to55   0.248 63   0.245 56   0.106 54   0.200 57.7  
10to55   0.236 62   0.243 55   0.114 57   0.198 58.0  
15to55   0.252 64   0.239 54   0.112 56   0.201 58.0  
30to50   0.337 70   0.270 58   0.112 55   0.240 61.0  
5to50   0.215 60   0.297 62   0.143 63   0.218 61.7  
10to50   0.307 67   0.289 60   0.142 62   0.246 63.0  
5to45   0.203 58   0.346 66   0.176 66   0.242 63.3  
15to50   0.377 71   0.285 59   0.140 61   0.267 63.7  
25to50   0.397 73   0.290 61   0.118 59   0.268 64.3  
5to40   0.176 54   0.392 70   0.214 70   0.261 64.7  
20to50   0.414 74   0.298 63   0.132 60   0.282 65.7  
5to35   0.167 51   0.438 73   0.248 75   0.284 66.3  
10to30   0.150 47   0.545 78   0.270 76   0.322 67.0  
10to45   0.327 69   0.340 65   0.179 67   0.282 67.0  
5to30   0.189 55   0.479 77   0.228 72   0.299 68.0  
15to45   0.463 75   0.333 64   0.180 68   0.325 69.0  

                            
Appendix Table 1a: Average Relative Error and Rank for All Possible Age-Trims   
of GGB in the Simulations, U.S. Counties and High-Income  Countries  
Sorted by Average Rank                  
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GGB                          
  Simulations US Counties High-Income Countries Average    
Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank  

10to40   0.274 66   0.393 71   0.224 71   0.297 69.3  
20to45   0.599 77   0.351 67   0.174 65   0.375 69.7  
5to25   0.252 65   0.459 76   0.207 69   0.306 70.0  
25to45   0.647 78   0.358 68   0.167 64   0.391 70.0  
10to35   0.210 59   0.454 75   0.279 77   0.314 70.3  
15to40   0.393 72   0.387 69   0.232 73   0.338 71.3  
15to35   0.310 68   0.451 74   0.318 78   0.360 73.3  
20to40   0.520 76   0.407 72   0.233 74   0.387 74.0  

                            
Appendix Table 1a: Average Relative Error and Rank for All Possible Age-Trims   
of GGB in the Simulations, U.S. Counties and High-Income  Countries  
Sorted by Average Rank                    
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SEG                           

  Simulations US Counties 
High-Income 
Countries Average     

Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   
60to80   0.097 1   0.119 1   0.050 1   0.089 1.0   
55to80   0.105 2   0.133 2   0.052 2   0.097 2.0   
55to75   0.111 3   0.143 3   0.054 3   0.103 3.0   
50to80   0.114 4   0.152 4   0.054 4   0.107 4.0   
50to75   0.122 5   0.164 5   0.056 6   0.114 5.3   
45to80   0.126 6   0.174 6   0.056 5   0.119 5.7   
50to70   0.131 7   0.180 7   0.059 9   0.123 7.7   
45to75   0.135 8   0.188 8   0.058 8   0.127 8.0   
40to80   0.141 9   0.199 9   0.058 7   0.132 8.3   
45to70   0.145 10   0.206 10   0.060 12   0.137 10.7   
40to75   0.151 11   0.215 11   0.060 10   0.142 10.7   
35to80   0.158 13   0.229 12   0.060 11   0.149 12.0   
45to65   0.156 12   0.229 13   0.063 15   0.149 13.3   
40to70   0.162 14   0.235 14   0.062 13   0.153 13.7   
35to75   0.169 15   0.247 15   0.063 14   0.160 14.7   
40to65   0.174 16   0.259 16   0.065 17   0.166 16.3   
30to80   0.180 17   0.268 17   0.064 16   0.171 16.7   
35to70   0.182 18   0.269 18   0.065 18   0.172 18.0   
40to60   0.188 19   0.287 19   0.067 20   0.181 19.3   
30to75   0.192 20   0.289 20   0.066 19   0.182 19.7   
35to65   0.195 21   0.295 21   0.068 21   0.186 21.0   
25to80   0.205 22   0.324 23   0.068 22   0.199 22.3   
30to70   0.206 23   0.313 22   0.069 23   0.196 22.7   
35to60   0.211 24   0.324 24   0.071 24   0.202 24.0   
25to75   0.219 25   0.348 26   0.071 25   0.213 25.3   
30to65   0.221 26   0.342 25   0.072 26   0.212 25.7   
35to55   0.228 27   0.356 27   0.073 28   0.219 27.3   
20to80   0.234 28   0.388 30   0.073 27   0.232 28.3   
25to70   0.234 29   0.376 29   0.074 29   0.228 29.0   
30to60   0.238 30   0.374 28   0.075 30   0.229 29.3   
25to65   0.251 32   0.408 31   0.077 32   0.245 31.7   
20to75   0.249 31   0.416 33   0.076 31   0.247 31.7   
30to55   0.257 33   0.409 32   0.078 33   0.248 32.7   
15to80   0.263 34   0.450 37   0.079 34   0.264 35.0   
20to70   0.265 35   0.448 36   0.080 35   0.264 35.3   

                            
Appendix Table 1b: Average Relative Error and Rank for All Possible Age-Trims  
of SEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                   
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SEG                           
  Simulations US Counties High-Income Countries Average     
Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   
25to60   0.270 36   0.445 34   0.081 36   0.265 35.3  
30to50   0.279 38   0.447 35   0.081 37   0.269 36.7  
15to75   0.279 37   0.481 38   0.083 38   0.281 37.7  
20to65   0.284 39   0.484 39   0.084 39   0.284 39.0   
25to55   0.291 40   0.485 40   0.084 40   0.287 40.0   
10to80   0.293 41   0.522 42   0.086 41   0.300 41.3   
15to70   0.297 42   0.516 41   0.087 42   0.300 41.7   
20to60   0.304 43   0.525 43   0.087 43   0.306 43.0   
25to50   0.315 45   0.530 44   0.088 44   0.311 44.3   
10to75   0.310 44   0.556 46   0.090 45   0.319 45.0   
15to65   0.317 46   0.555 45   0.091 46   0.321 45.7   
20to55   0.327 47   0.571 47   0.091 47   0.330 47.0   
25to45   0.343 51   0.580 48   0.092 48   0.339 49.0   
5to80   0.328 48   0.615 51   0.093 49   0.345 49.3   
10to70   0.329 49   0.594 49   0.094 50   0.339 49.3   
15to60   0.339 50   0.600 50   0.095 51   0.345 50.3   
20to50   0.353 54   0.622 52   0.096 52   0.357 52.7   
10to65   0.350 53   0.637 53   0.099 54   0.362 53.3   
5to75   0.347 52   0.653 55   0.097 53   0.366 53.3   
15to55   0.363 55   0.649 54   0.100 55   0.371 54.7   
20to45   0.383 58   0.680 56   0.101 56   0.388 56.7   
5to70   0.367 56   0.695 58   0.102 57   0.388 57.0   
10to60   0.373 57   0.685 57   0.103 58   0.387 57.3   
15to50   0.391 60   0.704 59   0.105 59   0.400 59.3   
5to65   0.390 59   0.743 61   0.107 60   0.413 60.0   
10to55   0.398 61   0.738 60   0.108 61   0.415 60.7   
20to40   0.416 63   0.750 62   0.108 62   0.425 62.3   
15to45   0.422 64   0.766 63   0.111 63   0.433 63.3   
5to60   0.414 62   0.797 64   0.112 64   0.441 63.3   
10to50   0.427 65   0.797 65   0.114 65   0.446 65.0   
5to55   0.441 66   0.855 67   0.117 66   0.471 66.3   
15to40   0.456 67   0.838 66   0.119 67   0.471 66.7   
10to45   0.458 68   0.863 68   0.121 68   0.481 68.0   

                            
Appendix Table 1b: Average Relative Error and Rank for All Possible Age-Trims  
of SEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                     
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SEG                           

  Simulations US Counties 
High-Income 
Countries Average     

Age 
Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   

5to50   0.471 69   0.921 69   0.123 69   0.505 69.0  
10to40   0.493 70   0.940 71   0.129 70   0.521 70.3  
15to35   0.494 71   0.925 70   0.129 71   0.516 70.7  
5to45   0.504 72   0.994 72   0.131 72   0.543 72.0  
10to35   0.531 73   1.031 73   0.139 73   0.567 73.0  
5to40   0.540 74   1.078 74   0.139 74   0.586 74.0   
10to30   0.571 75   1.138 75   0.151 76   0.620 75.3   
5to35   0.579 76   1.176 76   0.150 75   0.635 75.7   
5to30   0.621 77   1.290 77   0.161 77   0.691 77.0   
5to25   0.665 78   1.417 78   0.174 78   0.752 78.0   
10to40   0.274 66   0.393 71   0.224 71   0.297 69.3   
20to45   0.599 77   0.351 67   0.174 65   0.375 69.7   
5to25   0.252 65   0.459 76   0.207 69   0.306 70.0   
25to45   0.647 78   0.358 68   0.167 64   0.391 70.0   
10to35   0.210 59   0.454 75   0.279 77   0.314 70.3   
15to40   0.393 72   0.387 69   0.232 73   0.338 71.3   
15to35   0.310 68   0.451 74   0.318 78   0.360 73.3   
20to40   0.520 76   0.407 72   0.233 74   0.387 74.0   

                            
Appendix Table 1b: Average Relative Error and Rank for All Possible Age-Trims  
of SEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                     
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GGBSEG                           

  Simulations US Counties 
High-Income 
Countries Average     

Age Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   
50to70   0.113 6   0.114 3   0.061 6   0.096 5.0   
50to75   0.111 5   0.115 10   0.059 5   0.095 6.7   
50to80   0.110 4   0.117 12   0.058 4   0.095 6.7   
45to75   0.117 8   0.114 4   0.062 8   0.097 6.7   
45to70   0.120 9   0.113 2   0.064 9   0.099 6.7   
55to75   0.105 2   0.118 16   0.055 3   0.093 7.0   
55to80   0.105 3   0.119 17   0.055 2   0.093 7.3   
60to80   0.102 1   0.123 20   0.053 1   0.092 7.3   
45to80   0.115 7   0.115 9   0.061 7   0.097 7.7   
45to65   0.125 12   0.112 1   0.069 12   0.102 8.3   
40to75   0.124 11   0.114 6   0.067 11   0.102 9.3   
40to80   0.122 10   0.115 8   0.065 10   0.101 9.3   
40to70   0.128 13   0.114 5   0.070 13   0.104 10.3   
40to65   0.134 16   0.115 7   0.075 16   0.108 13.0   
35to80   0.129 14   0.117 13   0.071 14   0.106 13.7   
35to75   0.132 15   0.117 14   0.074 15   0.108 14.7   
40to60   0.141 19   0.116 11   0.081 19   0.113 16.3   
35to70   0.137 17   0.118 15   0.078 17   0.111 16.3   
30to80   0.138 18   0.122 19   0.080 18   0.113 18.3   
35to65   0.143 21   0.120 18   0.083 21   0.115 20.0   
30to75   0.142 20   0.124 22   0.083 20   0.116 20.7   
30to70   0.148 22   0.126 23   0.087 22   0.120 22.3   
35to60   0.151 24   0.123 21   0.090 24   0.121 23.0   
25to80   0.150 23   0.134 26   0.089 23   0.124 24.0   
30to65   0.155 26   0.129 25   0.094 26   0.126 25.7   
25to75   0.154 25   0.137 28   0.093 25   0.128 26.0   
35to55   0.160 27   0.128 24   0.098 27   0.129 26.0   
25to70   0.161 28   0.141 30   0.098 28   0.133 28.7   
30to60   0.164 30   0.134 27   0.101 30   0.133 29.0   
20to80   0.163 29   0.149 32   0.100 29   0.137 30.0   
25to65   0.169 32   0.146 31   0.105 32   0.140 31.7   
30to55   0.174 33   0.141 29   0.110 33   0.142 31.7   
20to75   0.168 31   0.154 35   0.104 31   0.142 32.3   

                            
Appendix Table 1c: Average Relative Error and Rank for All Possible Age-Trims  
of GGBSEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                   
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GGBSEG                           

  Simulations US Counties 
High-Income 
Countries Average     

Age Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   
20to70   0.176 34   0.160 36   0.111 34   0.149 34.7   
25to60   0.179 36   0.153 34   0.114 36   0.149 35.3   
15to80   0.177 35   0.164 38   0.112 35   0.151 36.0   
30to50   0.186 39   0.150 33   0.118 39   0.151 37.0   
15to75   0.183 37   0.170 40   0.117 37   0.157 38.0   
20to65   0.185 38   0.167 39   0.118 38   0.157 38.3   
25to55   0.190 40   0.163 37   0.123 40   0.159 39.0   
15to70   0.191 42   0.177 43   0.124 41   0.164 42.0   
10to80   0.191 41   0.181 44   0.125 42   0.166 42.3   
20to60   0.196 43   0.176 42   0.127 43   0.166 42.7   
25to50   0.203 46   0.175 41   0.132 46   0.170 44.3   
15to65   0.201 45   0.186 45   0.132 45   0.173 45.0   
10to75   0.198 44   0.188 47   0.130 44   0.172 45.0   
20to55   0.208 48   0.188 46   0.137 47   0.178 47.0   
10to70   0.207 47   0.197 50   0.138 48   0.181 48.3   
5to80   0.211 49   0.202 51   0.139 49   0.184 49.7   

15to60   0.213 50   0.196 49   0.141 50   0.184 49.7   
25to45   0.219 52   0.191 48   0.143 51   0.184 50.3   
10to65   0.218 51   0.207 53   0.147 53   0.190 52.3   
5to75   0.219 53   0.211 55   0.145 52   0.192 53.3   

20to50   0.223 54   0.203 52   0.147 54   0.191 53.3   
15to55   0.227 55   0.210 54   0.152 55   0.196 54.7   
5to70   0.229 56   0.221 57   0.153 56   0.201 56.3   

10to60   0.230 57   0.219 56   0.157 57   0.202 56.7   
20to45   0.239 58   0.223 58   0.158 58   0.207 58.0   
5to65   0.240 59   0.233 60   0.163 59   0.212 59.3   

15to50   0.242 60   0.227 59   0.163 60   0.210 59.7   
10to55   0.244 61   0.234 61   0.168 61   0.216 61.0   
5to60   0.254 62   0.247 62   0.173 63   0.225 62.3   

20to40   0.258 63   0.248 63   0.172 62   0.226 62.7   
15to45   0.259 64   0.248 64   0.175 64   0.227 64.0   
10to50   0.260 65   0.253 65   0.179 65   0.231 65.0   
5to55   0.269 66   0.264 66   0.185 66   0.239 66.0   

15to40   0.279 68   0.274 67   0.190 67   0.247 67.3   
10to45   0.278 67   0.276 68   0.192 68   0.249 67.7   

                            
Appendix Table 1c: Average Relative Error and Rank for All Possible Age-Trims  
of GGBSEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                   
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GGBSEG                           

  Simulations US Counties 
High-Income 
Countries Average     

Age Trim   ARE Rank   ARE Rank   ARE Rank   ARE Rank   
5to50   0.285 69   0.285 69   0.198 69   0.256 69.0   

10to40   0.298 70   0.303 70   0.208 71   0.269 70.3   
15to35   0.300 71   0.306 71   0.207 70   0.271 70.7   
5to45   0.304 72   0.310 72   0.211 72   0.275 72.0   

10to35   0.319 73   0.335 73   0.225 73   0.293 73.0   
5to40   0.325 74   0.339 74   0.227 74   0.297 74.0   

10to30   0.341 75   0.374 76   0.244 75   0.320 75.3   
5to35   0.347 76   0.372 75   0.245 76   0.321 75.7   
5to30   0.370 77   0.412 77   0.264 77   0.349 77.0   
5to25   0.394 78   0.454 78   0.284 78   0.377 78.0   

10to40   0.274 66   0.393 71   0.224 71   0.297 69.3   
20to45   0.599 77   0.351 67   0.174 65   0.375 69.7   
5to25   0.252 65   0.459 76   0.207 69   0.306 70.0   

25to45   0.647 78   0.358 68   0.167 64   0.391 70.0   
10to35   0.210 59   0.454 75   0.279 77   0.314 70.3   
15to40   0.393 72   0.387 69   0.232 73   0.338 71.3   
15to35   0.310 68   0.451 74   0.318 78   0.360 73.3   
20to40   0.520 76   0.407 72   0.233 74   0.387 74.0   

                            
Appendix Table 1c: Average Relative Error and Rank for All Possible Age-Trims  
of GGBSEG in the Simulations, U.S. Counties and High-Income  Countries   
Sorted by Average Rank                     
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Figure Legends 
 
Figure 1: Three Families of Death Distribution Methods 
 
Figure 2a: Simulated population model. This schematic describes the evolution of the 
simulated population, where P0 is the probability of remaining in the sample, Pm is the 
probability of dying in the year given an age-specific probability ψ of dying in a single day (ߞ is 
the fraction of time spent in the year in age group x1), Pε(a,t) is the probability of migrating at 
age a and time t, and Pb(a,t) is the probability of giving birth at age a and time t and only applies 
to the reproductive age groups. 
 
Figure 2b: The effect of fertility and mortality evolution over time on the population age-
structure with no migration. q is the probability of dying per 1000. 
 
Figure 2c: The age pattern of in- and out- migration used to model migration in the 
simulations. This age pattern is based on the average of a geographically diverse selection of 
countries with complete migration data as reported in the 1989 Demographic Yearbook. 
 
Figure 3: Estimated relative completeness versus true relative completeness in the 
simulations, U.S. counties with a population greater than 100,000 and large high-income 
countries for the three methods. The true completeness for the counties is artificially offset from 
1 in order to better distinguish it graphically from high-income countries. 
 
Figure 4: Application of optimal Death Distribution Methods to 8 countries. 
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Figure 1 
Generalized Growth Balance (GGB)    Hill, 1987

 
Data required:  
• age and sex distribution of population at two time points, 

census 1 and census 2 
• average annual deaths during the intercensal period 
 
Base concept: the mathematical relationship of the demographic 
balancing equation: 
 
  Birth rate = growth rate + death rate 
 
The slope and intercept of the modeled equation (plotting birth rate 
versus death rate) along with observed growth rates can be used to 
obtain the relative coverage of census 1 to census 2 as well as the 
relative completeness of death registration to census coverage. 
 

 
Assumptions: 
• No migration 
• No age‐misreporting 
• Completeness constant by age 
 
 

Synthetic Extinct Generations (SEG)    Bennett & Horiuchi, 1981, 1984

 
Data required:  
• age and sex distribution of population at two time points, 

census 1 and census 2 
• average annual deaths during the intercensal period 
 
Base concept: the number of people age x at time 0 is equal to the 
number of deaths age x in year 0, plus deaths age x+1 in year 1, plus 
deaths age x+2 in year 2 and so on until the entire cohort is extinct. 
Use intercensal age‐specific growth rates and current deaths at 
older ages to estimate future cohort deaths.  
 
By comparing estimated future cohort deaths to current cohort size, 
the completeness of death registration can be obtained. 
 
 

 
Assumptions: 
• No migration 
• No age‐misreporting 
• Completeness constant by age 
• Coverage constant across two 

censuses 
 
 

Hybrid (GGB‐SEG)    Hill & Choi, 2004

 
Data required:  
• age and sex distribution of population at two time points, 

census 1 and census 2 
• average annual deaths during the intercensal period 
 
Base concept: Use GGB to estimate coverage of census 2 relative to 
census 1 and use this to adjust populations prior to use in SEG 
method. This allows relaxation of the SEG assumption of constant 
coverage between censuses.  
 
 

 
Assumptions: 
• No migration 
• No age‐misreporting 
• Completeness constant by age 
• Relative coverage of censuses 

constant by age 
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Figure 2a 
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Figure 2b 
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Figure 2c 
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Figure 3 
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Figure 4 
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