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Over the last several years, we have developed two Bayesian approaches to multistate life 

table estimation that allow the construction of interval estimates of life table quantities. 

One method requires panel data; the other requires independent cross-sectional data for 

mortality and health. Both methods involve Gibbs sampling, and both implicitly assume 

the sample data are from a simple random sample, which is not the case with most panels 

or cross-sections. Here, we investigate the implications of ignoring sample design. We 

ask (1) whether sample design influences interval estimates to a substantively meaningful 

extent, and (2) whether the Bayesian approach can be adapted to handle design. We find 

that sample design increases interval estimates only slightly in most cases. We also show 

how the Bayesian approach can be easily adapted to incorporate most design effects via a 

bootstrap. We describe the procedure and give an applied presentation of its 

implementation.  

 

Slightly Extended abstract 

 

Over the last 5 years, we have developed two Bayesian approaches to multistate life 

tables estimation which allow the construction of interval estimates of life table quantities 

for any desired covariate profile.  Our original method (see Lynch and Brown, 

Sociological Methodology, 2005)  requires panel data and involves using Gibbs sampling 

of parameters from a discrete time bivariate dichotomous probit model capturing 

transitions between states between waves of the panel study.  The new method (currently 

under review) is an extension of Sullivan’s method and requires independent cross-

sectional data sets for mortality and health.  The mortality data can be vital statistics rate 

data, while the health data should come from a cross-sectional survey.  This method also 

involves Gibbs sampling of parameters, but from a bivariate dichotomous probit model 

that has been altered somewhat to handle (1) known probabilities for mortality rather than 

dichotomous indicators, and (2) covariates measured at different levels of disaggregation  

for health and mortality data.   

 

Under both approaches, once the Gibbs sampling is complete, the parameter samples are 

then combined with a desired set of covariate values, and age-specific predicted transition 

probability matrices are produced for each Gibbs sample using integral calculus.  The 

result is a collection of age-specific transition matrices that can be used to generate a 

distribution of multistate life tables. Quantities from these life tables can then be 

summarized by constructing basic summary measures, including confidence intervals.   

 

Both methods implicitly assume that the sample data are from a simple random sample, 

which is not the case with the vast majority of public use panels or cross-sections.  In this 

paper, we investigate the implications of ignoring sample design issues.  Specifically, we 



ask (1) whether sample design influences interval estimates at a substantively meaningful 

level, and (2) whether the Bayesian approach can be adapted to compensate for design.   

 

In order to answer (1), we use bootstrapped parameter estimates from probit models in 

Stata that adjust for design (e.g., the svy approach) and compare multistate life table 

results from that approach to results from our original approaches.  We find that sample 

design increases interval estimates only slightly, especially when the estimate of interest 

is the proportion of remaining life to be spent in different states.  When years are the 

measure of interest, interval estimates are affected to a slightly greater degree, but they 

are still not substantially larger than unadjusted intervals.   

 

We also show how the Bayesian approach can be easily adapted to incorporate most 

design issues via the use of a weighted bootstrap.  Under the weighted bootstrap, at each 

step of the Gibbs sampler, the data are resampled using sample weights as inverse 

probabilities of inclusion into the bootstrap sample.  After a bootstrap sample is obtained, 

the Gibbs sampler proceeds as usual.  All in all, this approach requires only a slight 

adjustment to our original approaches. 

 

We describe the procedure and give a very applied presentation of its implementation via 

freely available software. 


