Reconceptualizing health as wellness among older adults: Conditions, constellations, and social risk factors from a nationally representative probability sample of men and women 57 to 85 years of age
 Edward O. Laumann, Linda J. Waite, Aniruddha Das, and Martha McClintock
 University of Chicago

INTRODUCTION

Extant biomedical perspectives on sickness in late life focus either on individual health conditions, or in the clustering of such conditions into isolated syndromes. None have examined the concatenation of a full spectrum of health conditions into syndromal clusterings within individuals, or the social organization of these broad health statuses. Similarly, while references to "wellness" have become common in both the scientific and popular health literature, the question of what wellness in late-life consists of -in terms of a multi-condition health profilehas yet to be rigorously investigated, with existing studies using the term as an antonym for disease rather than a state of positive health. In part, this is due to a lack of suitable data. Clinical or convenience samples, from which biomeasures of health are generally drawn, typically lack statistical power and adequate social measures. Moreover, due to an unknown probability of selection bias, inferences drawn from such samples are not generalizable to larger or national populations. Large epidemiological studies, in contrast, have large sample sizes and therefore power, but lack biomeasures and a full range of social measures. To characterize disease and wellness adequately, a representative probability sample is needed.

We begin this effort here, using data from the 2005-2006 National Social Life, Health, and Aging Project (NSHAP), a nationally representative probability sample of elderly U.S.
women and men, to explore the social distribution and etiology of health constellations in the general population, with each constellation characterized by a profile of conditions from multiple domains of health. The data include self reports on a range of diagnosed health conditions as well as dimensions of mental health, as well as self-ratings of both physical and mental health. Unique to NSHAP is a wide range of biomeasures-including assessments of physical and sensory function, height and weight, systolic and diastolic blood pressure, salivary, vaginal mucosal, and blood samples (yielding C-reactive protein and hemoglobin a1c). The representativeness and multiple types of measures in NSHAP enable us to characterize wellness as well as disease in U.S. subpopulations not yet diagnosed with any health condition, as also sections possibly lacking access to healthcare-both of which are usually missed by disease registries. The combination of mental and physical status measures allows us to rigorously investigate mind-body junctures in the formation of health states.

Finally, in contrast with epidemiological studies containing only basic demographic data and isolated social measures, NSHAP was designed from the start as a sociologically-informed data collection effort. As such, it contains a uniquely wide range of measures, on an individual's broad social location (in demographic terms), social embeddedness (based on a rigorous network-roster method used in previous surveys, as well as ties to friends and family), and sociality (in terms of frequency of social interactions of various types). This richness of social data allows us to link health or illness configurations to a person's social profile.

METHODS

Survey

The National Social Life, Health, and Aging Project (NSHAP) is a population-based study of the health, social life, and well-being of older adults, ages 57-85, from across the United

States. The study conducted in-home interviews with 3,005 community-dwelling adults between July 2005 and March 2006. Blacks and Hispanics were oversampled, as were the oldest old, providing adequate cases for analyses by age, gender, and race/ethnicity. Through an in-person interview and a leave-behind questionnaire, NSHAP obtained information on demographic characteristics; social networks; social and cultural activity; physical and mental health, including cognition; well-being; illness; medications and alternative therapies; history of sexual and intimate partnerships; and patient-physician communication. NSHAP represents a unique, interdisciplinary effort to collect social data alongside biological indicators in a population-based sample of older adults. The NSHAP study collected 13 biomeasures, including the assessment of respondents' weight, waist circumference, height, blood pressure, distance vision, smell, touch, and mobility. NSHAP also collected blood spots, saliva, oral fluid for HIV testing, and, from female respondents, a self-administered vaginal swab. The survey had an unweighted response rate of 74.8% and a weighted response rate of $75.5 \% .{ }^{1,2}$ Institutional review boards at the University of Chicago and the National Opinion Research Center (NORC) approved the data collection procedures.

For our analyses, we chose 40 health indicators (listed in the first column of Table 1), from 10 broad "domains" representing the full spectrum of late-life health, both physical and mental. Our specific health domains included: (1) body composition; (2) energy metabolism; (3) cardiovascular function; (4) inflammation/infection; (5) health behaviors; (6) cancer; (7) mental health and cognition; (8) functional health; (9) incontinence; and (10) sensory function.

Our analytic strategy begins with finite mixture modeling. Specifically, we use Latent Class Analysis (LCA) to extract possible syndromes characterized by the clustering of multiple health states, and the distribution of these syndromes among U.S. elderly. LCA is a statistical
method for the examination of possible unobserved "latent" categorical variables-with the categories indicating mutually exclusive latent classes-that might account for covariation among observed categorical indicators. ${ }^{3,4}$ Use of LCA to test the clustering of multiple symptoms into underlying syndromes-while never before done for such a wide variety of indicators, from a nationally representative survey-has become increasingly common in the epidemiology literature. ${ }^{5-10}$ Each of our class is thus a configuration consisting of particular values or probabilities of each of our 40 individual health conditions or measures. As such, this range of configurations portrays health in late life as a discrete rather than continuous distribution. All LCA analyses were conducted in Mplus Version 5.0 ${ }^{11}$

In our second step, we investigate the social organization of health among U.S. elderly, by using multinomial logit models to regress our latent classes, first on demographic variables denoting social location, and then on proximal social variables net of demographic factors. The latter group includes ties to and reliance on friends and family; other social activities, such as volunteering and church attendance; and a set of summary indicators for a person's egocentric social network. A direct payoff from this strategy is that it allows for the creation of social profiles of health and illness states, that can be used to identify at-risk individuals in clinical settings. All multinomial logit models were run using the Stata 10.0 statistical package. ${ }^{12}$

Fourteen latent classes of health emerge from our results. Many of these are similar in content to syndromes in the clinical literature, an empirical indication of the validity of our method. Taken as a set, the classes represent not simply states but stages of health. The first stage consists of a single class we label good enough health-that, while not optimal in all aspects of health, represents a fairly robust and functional physical condition. This is the class that indicates "wellness" or healthy aging in our analyses. Surprisingly, a little over a quarter of elderly
individuals in the U.S. falls within this class. Another 52\% fall into the second stage, comprised of 7 classes indicating adequate health. Stage 3 consists of 4 more classes representing a little over 19% of the U.S. elderly population, and indicates poor health. Finally, 2 endstage classes comprise stage 4 , and represent just over 3% of the population of interest. We infer a pattern of disease-progression or "cascades" with these configurations, such that one class is a prior stage of another. A key contribution of this article is to investigate social attributes and behaviorssuch as an individual's social network patterns-that distinguish prior from later stages of a cascade, not simply as risk factors but as protective factors against the deterioration of health.

RESULTS

Insert Fig. 1 about here

Insert Fig. 2 about here
\qquad --

Insert Table 1 about here
\qquad
\qquad

Insert Table 2 about here

Insert Table 3 about here

1 Lindau ST, Schumm LP, Laumann EO, Levinson W, O'Muircheartaigh CA, Waite LJ. A study of sexuality and health among older adults in the United States. N Engl J Med. 2007;357:762-774.
2 O'Muircheartaigh C, Smith S. NSHAP (National Social Life, Health, and Aging Project) Wave 1 methodology report. Chicago, Ill: National Opinion Research Center (NORC); 2007.
3 McCutcheon AL. Latent class analysis. Newbury Park, Calif: Sage Publications; 1987.
4 Clogg CC. Latent class models. In: Arminger G, Clogg CC, Sobel ME, eds. Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York, NY: Plenum Press; 1995:311:359.
5 Uebersax JS, Grove WM. Latent class analysis of diagnostic agreement. Stat Med. 1990:9;559-572.
6 Young MA, Tanner MA, Meltzer HY. Operational definitions of schizophrenia: what do they identify? J Nerv Ment Dis. 1982;170:443-447.
7 Muthen BO. Should substance use disorders be considered as categorical or dimensional? Addiction. 2006;101: S6-S16.
8 Rindskopf D, Rindskopf W. The value of latent class analysis in medical diagnosis. Stat Med. 1986;5:21-27. 9 Lenzenweger MF, McLachlan G, Rubin DB. Resolving the latent structure of schizophrenia endophenotypes using expectation-maximization-based finite mixture modeling. J Ab Psych. 2007;116:16-29.
10 Fossati A, Citterio A, Grazioli F, Borroni S, Carretta I, Maffei C, Battaglia M. Taxonic structure of schizotypal personality disorder: a multi-instrument, multi-sample study based on mixture models. Psych Res. 2005;137:71-85.
11 Muthen LK, Muthen BO. Mplus User's Guide. Fourth Edition. Los Angeles, CA: Muthen \& Muthen; 2007.
12 STATA Release 10.0. College Station, Tex: Stata Press; 2007. Fig. 1: Syndromal Clusters: Mental Health Gradient
Self-Rated Mental Health
Poor
Fig. 2: Syndromal Clusters: Physical Health Gradient Fig. 2: Syndromal Clusters: Physical Health Gradient Fig. 2: Syndromal Clusters: Physical Health Gradient Fig. 2: Syndromal Clusters: Physical Health Gradient
8

	I. Good Enough Health	II. Adequate Health							III. Poor health				IV. Endstage	
	25.7\%	52\%							19\%				3\%	
	1	11 a	Ilb	IIc	Ild	Ile	Ilf	Ilg	Illa	IIIb	IIIC	IIId	IVa	IVb
	Healthy	Conscientious	Pessimists 1.0	High Lifers 1.0	Deniers	High Lifers 2.0	Obese Smokers	Impair- ed Funct- ion	Pessimists 2.0	Obese Non- Risk Takers	Cardiovascular III	Coping III	End- stage, Stable Mental health	Endstage, Bad Mental Health
1. BODY COMPOSITION														
$\mathrm{BMI}^{\text {a }}$	27.50	28.09	27.47	28.75	31.22	31.82	36.58	32.64	26.61	35.29	31.88	30.63	27.71	33.41
2. ENERGY METABOLISM														
Diabetes ${ }^{\text {b }}$	0.06	0.11	0.06	0.14	0.25	0.00	0.32	0.86	0.17	0.63	0.29	0.36	0.26	0.44
Hba1c ${ }^{\text {a }}$	5.71	5.79	5.79	6.08	5.95	5.54	6.00	7.78	5.76	11.59	5.95	6.09	6.08	6.64
Thyroid problems ${ }^{\text {b }}$	0.13	0.20	0.14	0.03	0.07	0.12	0.16	0.11	0.15	0.15	0.18	0.28	0.20	0.16
3. CARDIOVASCULAR FUNCTION														
Systolic bp ${ }^{\text {a }}$	135.55	129.50	134.02	134.80	160.37	141.52	139.10	138.20	131.53	124.18	135.22	143.07	127.55	137.02
Diastolic bp ${ }^{\text {a }}$	82.32	76.72	80.25	79.31	93.39	88.95	85.52	78.35	80.82	76.18	80.03	82.30	76.46	83.37
Hypertension ${ }^{\text {b }}$	0.34	0.54	0.41	0.45	0.83	0.79	0.53	0.80	0.40	0.60	0.65	0.85	0.57	0.84
Stroke ${ }^{\text {b }}$	0.01	0.07	0.04	0.01	0.08	0.00	0.11	0.12	0.14	0.05	0.23	0.21	0.30	0.19
Heart failure/attack ${ }^{\text {c }}$														
Diagnosed or treated	0.03	0.11	0.04	0.00	0.18	0.23	0.07	0.17	0.13	0.22	0.23	0.13	0.15	0.18
Diagnosed and treated	0.01	0.04	0.01	0.08	0.04	0.09	0.06	0.09	0.06	0.16	0.16	0.10	0.10	0.12
4. INFLAMMATION/INFECTION														
C-reactive protein ${ }^{\text {a }}$	1.68	2.15	2.00	4.38	3.37	100.00	30.88	3.31	2.93	5.34	3.47	3.29	6.50	8.92
Ever diagnosed w. STD ${ }^{\text {b }}$	0.09	0.07	0.08	0.02	0.07	0.95	0.00	0.11	0.13	0.10	0.07	0.12	0.00	0.16
$E B V^{\text {b }}$	151.67	151.26	142.49	162.78	173.98	209.39	155.93	169.48	153.88	150.37	184.48	151.01	180.01	149.89
Ulcers ${ }^{\text {b }}$	0.06	0.19	0.12	0.08	0.12	0.00	0.07	0.09	0.16	0.08	0.17	0.26	0.12	0.31
Asthma ${ }^{\text {b }}$	0.04	0.11	0.11	0.10	0.07	0.00	0.06	0.08	0.11	0.21	0.21	0.14	0.19	0.32
Other urinary problems ${ }^{\text {b }}$	0.10	0.35	0.26	0.13	0.09	0.81	0.05	0.29	0.32	0.10	0.32	0.41	0.58	0.52
Poor kidney function ${ }^{\text {b }}$	0.01	0.03	0.00	0.00	0.00	0.00	0.04	0.06	0.09	0.06	0.11	0.13	0.05	0.14
5. HEALTH BEHAVIORS														
Fewer hours of sleep [13 to 1] ${ }^{\text {a }}$	6.94	6.90	7.32	7.10	6.94	7.50	7.04	7.08	7.25	7.37	7.44	7.43	6.91	8.04
Cotinine ${ }^{\text {a }}$	1.68	2.15	2.00	4.38	3.37	100.00	30.88	3.31	2.93	5.34	3.47	3.29	6.50	8.92
Cirrhosis ${ }^{\text {b }}$	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.02	0.03	0.01	0.02	0.04	0.03	0.07
Emphysema/COPD ${ }^{\text {b }}$	0.02	0.17	0.08	0.20	0.03	0.24	0.05	0.10	0.13	0.00	0.22	0.20	0.24	0.41

														10
6. CANCER														
Cancer (common) ${ }^{\text {b }}$	0.20	0.28	0.16	0.18	0.12	0.00	0.15	0.23	0.18	0.06	0.18	0.37	0.33	0.16
Cancer (gender specific) ${ }^{\text {b }}$	0.05	0.06	0.07	0.05	0.04	0.04	0.03	0.03	0.09	0.03	0.03	0.07	0.03	0.01
7. MENTAL HEALTH AND COGNITION														
Depression ${ }^{\text {a,d }}$	-0.68	-0.48	0.47	-0.43	-0.44	0.45	-0.22	-0.33	1.75	0.66	0.36	0.60	1.43	3.00
Anxiety ${ }^{\text {a,d }}$	-0.50	-0.35	0.70	-0.44	-0.39	0.10	-0.14	-0.38	2.12	0.05	-0.02	0.36	0.60	2.60
Stress ${ }^{\text {a,d }}$	-0.52	-0.46	0.68	-0.32	-0.34	-0.23	-0.54	-0.36	1.73	0.38	0.23	0.40	1.39	1.79
Mental health (self-rating) ${ }^{\text {c }}$														
excellent	0.56	0.15	0.12	0.37	0.13	0.00	0.63	0.30	0.02	0.24	0.21	0.05	0.09	0.03
very good	0.41	0.52	0.42	0.31	0.43	0.87	0.12	0.33	0.09	0.24	0.28	0.32	0.16	0.05
good	0.02	0.32	0.38	0.32	0.40	0.00	0.25	0.29	0.41	0.16	0.27	0.39	0.25	0.26
fair	0.00	0.02	0.08	0.00	0.04	0.13	0.00	0.08	0.36	0.32	0.22	0.23	0.34	0.37
poor	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.12	0.05	0.03	0.01	0.15	0.29
Happiness ${ }^{\text {c }}$														
extremely happy	0.31	0.14	0.05	0.23	0.09	0.00	0.40	0.14	0.04	0.04	0.07	0.01	0.02	0.03
very happy	0.55	0.53	0.24	0.45	0.38	0.33	0.48	0.50	0.22	0.26	0.42	0.26	0.10	0.07
pretty happy	0.14	0.33	0.55	0.32	0.48	0.67	0.11	0.37	0.35	0.40	0.38	0.49	0.52	0.31
unhappy sometimes	0.00	0.00	0.16	0.00	0.05	0.00	0.00	0.00	0.31	0.29	0.12	0.23	0.27	0.36
unhappy usually	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.08	0.01	0.00	0.01	0.10	0.24
High self esteem $^{\text {c }}$														
very true	0.62	0.44	0.21	0.45	0.47	0.07	0.76	0.58	0.24	0.40	0.49	0.27	0.19	0.17
somewhat true	0.29	0.34	0.38	0.34	0.38	0.93	0.21	0.26	0.34	0.33	0.32	0.40	0.30	0.28
neither true or untrue	0.05	0.09	0.18	0.10	0.06	0.00	0.00	0.09	0.10	0.10	0.07	0.16	0.15	0.26
somewhat untrue	0.03	0.09	0.18	0.05	0.08	0.00	0.00	0.06	0.16	0.18	0.08	0.07	0.21	0.18
not very true	0.01	0.04	0.05	0.07	0.02	0.00	0.03	0.01	0.16	0.00	0.04	0.10	0.16	0.12
Physical health (self-rating) ${ }^{\text {c }}$														
excellent	0.41	0.03	0.07	0.07	0.02	0.00	0.04	0.02	0.02	0.11	0.02	0.00	0.03	0.00
very good	0.51	0.38	0.44	0.26	0.22	0.53	0.38	0.21	0.18	0.05	0.06	0.07	0.05	0.02
good	0.06	0.45	0.31	0.47	0.64	0.47	0.34	0.41	0.32	0.20	0.16	0.30	0.00	0.08
fair	0.02	0.13	0.17	0.10	0.11	0.00	0.21	0.28	0.32	0.51	0.48	0.46	0.35	0.42
poor	0.00	0.02	0.00	0.11	0.01	0.00	0.04	0.07	0.16	0.14	0.29	0.17	0.57	0.49
Alzheimers ${ }^{\text {b }}$	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.03	0.03	0.01	0.01	0.07	0.04
Number of items Incorrectly remembered ${ }^{\text {c }}$														
0	0.76	0.72	0.66	0.60	0.58	0.66	0.77	0.61	0.50	0.51	0.39	0.49	0.18	0.33
1	0.20	0.21	0.23	0.25	0.30	0.34	0.19	0.31	0.26	0.36	0.41	0.33	0.28	0.42
2	0.03	0.06	0.08	0.13	0.10	0.00	0.04	0.06	0.10	0.10	0.09	0.13	0.17	0.13
3+	0.01	0.02	0.02	0.02	0.02	0.00	0.00	0.02	0.14	0.03	0.11	0.05	0.37	0.13
8. FUNCTIONAL HEALTH														
Pain walking ${ }^{\text {b }}$	0.17	0.34	0.38	0.25	0.25	0.00	0.71	0.63	0.62	0.30	0.62	0.78	0.68	0.84
Exercise forbidden ${ }^{\text {b }}$	0.01	0.06	0.07	0.00	0.00	0.00	0.02	0.00	0.07	0.15	0.13	0.11	0.19	0.16
Arthritis ${ }^{\text {b }}$	0.34	0.61	0.38	0.43	0.47	0.41	0.67	0.57	0.59	0.31	0.78	0.80	0.68	0.81

Poor functional health ${ }^{\text {a,d }}$	-0.50	-0.34	-0.40	-0.33	-0.32	-0.45	-0.18	-0.15	-0.12	-0.20	2.05	0.36	4.37	1.57
9. INCONTINENCE														
Fecal incontinence ${ }^{\text {b }}$	0.02	0.09	0.05	0.02	0.07	0.00	0.14	0.12	0.24	0.04	0.20	0.25	0.24	0.26
Urinary incontinence ${ }^{\text {b }}$	0.22	0.52	0.38	0.16	0.25	0.75	0.53	0.43	0.48	0.42	0.64	0.68	0.64	0.77
10. SENSORY FUNCTION														
Vision (objective) ${ }^{\text {c }}$														
Good	0.76	0.58	0.67	0.53	0.73	0.84	0.68	0.64	0.67	0.62	0.51	0.27	0.04	0.55
Moderately decreased	0.19	0.34	0.27	0.19	0.20	0.00	0.27	0.26	0.27	0.18	0.30	0.41	0.56	0.34
Poor	0.05	0.07	0.06	0.28	0.06	0.16	0.05	0.10	0.07	0.20	0.19	0.32	0.39	0.11
Poor hearing ${ }^{\text {b }}$	-0.34	0.18	-0.20	-0.10	-0.15	0.50	-0.19	0.05	0.21	0.01	0.16	0.30	0.04	0.29
Poor touch, smell, taste ${ }^{\text {a,c }}$	-0.64	0.15	-0.10	-0.14	0.37	-0.08	-0.86	0.03	0.13	0.19	0.18	0.39	0.84	0.83

Note: Green cells indicate robust health; yellow cells indicate compromised health; red cells indicate poor health.
${ }^{\text {a }}$ Continuous indicator, cells denote item mean for each latent class.
${ }^{\mathrm{b}}$ Dummy indicator, cells denote item probability for each latent class.
${ }^{\text {c }}$ Ordinal scale, cells denote probability for each category for each latent class. ${ }^{\mathrm{d}}$ Standardized summary index.

	N	I	IIa	IIb	IIC	IId	IIe	IIf	IIg	IIIa	IIIb	IIIC	IIId	IVa	IVb
N	2,977	699	638	348	72	235	9	39	194	145	48	179	263	46	62
\%	100\%	25.5	21.9	12.3	2.6	7.3	0.4	1.8	5.5	4.7	1.6	5.2	7.8	1.3	1.9
Age															
Age	2,977		$\begin{aligned} & \mathbf{1 . 1 * *} \\ & (0.0) \end{aligned}$	$\begin{gathered} 1.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.0) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.0) \end{gathered}$	$\begin{aligned} & 1.1 \text { ** } \\ & (0.0) \end{aligned}$	$\begin{aligned} & 1.1 * * \\ & (0.0) \end{aligned}$	$\begin{aligned} & 1.1 * * \\ & (0.0) \end{aligned}$	$\begin{gathered} 1.0 \\ (0.0) \end{gathered}$			
Gender (ref: Men)	1,455		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Women	1532		$\begin{gathered} 1.0 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.2) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5} \text { * } \\ (0.1) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.8) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.4) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 6} \text { ** } \\ & (0.1) \end{aligned}$	$\begin{gathered} 1.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.4) \end{gathered}$	$\begin{gathered} 1.8 \\ (0.7) \end{gathered}$
Education (ref:															
High school	785		$\begin{gathered} 0.8 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.4) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.3) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 5} \text { ** } \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 * *} \\ & (0.1) \end{aligned}$	$\begin{gathered} 0.7 \\ (0.3) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 3 * *} \\ & (0.1) \end{aligned}$	$\begin{gathered} 0.6 \\ (0.2) \end{gathered}$	$\begin{gathered} \mathbf{0 . 4} \\ (0.2) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 3} \mathbf{3} * \\ & (0.1) \end{aligned}$
Some college	846		$\begin{gathered} 0.7 \\ (0.2) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5} \text { * } \\ (0.1) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.6 \\ (0.2) \end{gathered}$	$\begin{gathered} 0.6 \\ (0.5) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.4) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 4 * *} \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.3 * * \\ & (0.1) \end{aligned}$	$\begin{gathered} 0.6 \\ (0.3) \end{gathered}$	$\begin{aligned} & 0.2 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 3} \mathbf{3}^{*} \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.2 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 2} 2 * \\ & (0.1) \end{aligned}$
\geq Bachelors	651		$\begin{aligned} & 0.5 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.3 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.3 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.3 * * \\ & (0.1) \end{aligned}$	$\begin{gathered} 0.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.4 \\ (0.4) \end{gathered}$	$\begin{aligned} & 0.2 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1} \mathbf{1}^{*} \\ & (0.0) \end{aligned}$	$\begin{gathered} 0.4 \\ (0.2) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 1} \mathbf{1}^{*} \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.2 * * \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1} \mathbf{1}^{*} \\ & (0.1) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0} \mathbf{0}^{* *} \\ & (0.0) \end{aligned}$
Ethnicity (ref: non-															
Black	507		$\begin{gathered} 1.1 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.2) \end{gathered}$	$\begin{gathered} \mathbf{2 . 9 * *} \\ (1.1) \end{gathered}$	$\begin{aligned} & 3 . \mathbf{8}^{* *} \\ & (0.9) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0} \text { ** } \\ & (0.0) \end{aligned}$	$\begin{gathered} \text { 5.0* } \\ (3.8) \end{gathered}$	$\begin{aligned} & 3.4 * * \\ & (0.7) \end{aligned}$	$\begin{aligned} & 2.3 * * \\ & (0.5) \end{aligned}$	$\begin{aligned} & \mathbf{6 . 1} \text { ** } \\ & (3.1) \end{aligned}$	$\begin{aligned} & 2.3 * * \\ & (0.6) \end{aligned}$	$\begin{aligned} & 1.9 * * \\ & (0.4) \end{aligned}$	$\begin{gathered} \text { 3.0* } \\ (1.3) \end{gathered}$	$\begin{aligned} & \mathbf{1 . 8} \text { * } \\ & (0.5) \end{aligned}$
Hispanic/Other	372		$\begin{gathered} 1.0 \\ (0.2) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.3 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.8) \end{gathered}$	$\begin{gathered} 1.1 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.9 \\ (0.7) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.3) \end{gathered}$	$\begin{gathered} 2.7 \\ (1.5) \end{gathered}$	$\begin{gathered} 2.0 \\ (0.9) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.4) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 8} \text { * } \\ & (1.4) \end{aligned}$	$\begin{gathered} 1.5 \\ (0.4) \end{gathered}$
Marital status (ref: married/cohabiting)	1,844		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Divorced/Separated	364		$\begin{gathered} 1.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.8 \\ (0.9) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.3) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.6) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.4) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.4) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.4) \end{gathered}$	$\begin{gathered} 2.8 \\ (1.5) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.4) \end{gathered}$	$\begin{aligned} & 2.3 * * \\ & (0.6) \end{aligned}$	$\begin{gathered} 0.7 \\ (0.5) \end{gathered}$	$\begin{gathered} \mathbf{2 . 5} \text { * } \\ (1.1) \end{gathered}$
Widowed/ Nevermarried	769		$\begin{gathered} 0.8 \\ (0.1) \end{gathered}$	$\begin{gathered} 1.2 \\ (0.3) \end{gathered}$	$\begin{gathered} 1.7 \\ (0.7) \end{gathered}$	$\begin{aligned} & 1.8 * * \\ & (0.4) \end{aligned}$	$\begin{gathered} 2.2 \\ (1.9) \end{gathered}$	$\begin{gathered} 0.9 \\ (0.5) \end{gathered}$	$\begin{gathered} 1.4 \\ (0.3) \end{gathered}$	$\begin{aligned} & 2.2 * * \\ & (0.6) \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.3) \end{gathered}$	$\begin{aligned} & 1.9 * \\ & (0.5) \end{aligned}$	$\begin{gathered} 1.1 \\ (0.4) \end{gathered}$	$\begin{aligned} & \mathbf{4 . 2 * *} \\ & (1.7) \end{aligned}$

[^0]
education, and marital status. Baseline
gender, race/ethnicity
8
Note: Each network measure was added one-at-a-time to basic controls: age
category for all models is latent class I.
$* p<.05 ; * * p<.01$

[^0]: Note: Baseline category for all multinomial logit models is latent class I. Italicization denotes reference category. * $p<.05 ; * * p<.01$

