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Abstract

Demographic and social processes play an important role in preventing or sustaining the
spread of infectious diseases in human societies. In this paper, we discuss the possibilities
offered by two independent social data sources - time use data and contact surveys - to explain
the observed age-specific seroprevalence profile for two close-contact childhood infections
(varicella and parvovirus B19). We first discuss the epidemiological consequences of the
assumption that age-specific potentially infectious contacts are proportional to self-reported
age-specific number of social contacts or age-specific estimates of time of exposure. Then
we propose a model that combines information from age-specific social contact and time
of exposure matrices. The model is used to evaluate the impact of behavioral changes
and specific interventions (e.g., school closure) on the spread of close-contact infections.
Empirical analysis is based on data for Italy, where a comprehensive and up-to-date collection
of serologic and social data is available.



EXTENDED ABSTRACT

Introduction

Social mixing patterns are a relevant explanatory factor for the spread of close-contact in-
fectious diseases [1, 2]. The exposure and frequency of contacts between people belonging
to different age groups is strongly dependent on demographic and social variables. Popula-
tion age structure and household size are important demographic determinants of observed
contact patterns. Social structure is another crucial element: for instance, the likelihood
of interaction between people of different age groups depends on norms that influence the
location where they spend time (e.g. work, school, home, restaurant, public transportaton,
etc.) and the time slots of the day during which specific activities take place.

Three main approaches have been suggested in the literature to estimate mixing patterns
using social data. A first approach relies on contact surveys in which the respondent self
reports the number of contacts he has during a randomly sampled day, together with some
additional information (i.e., age of contacted person, whether the contact is physical or not,
etc.) [3, 4, 5, 6, 7]. A second approach relies on micro-simulation: contact and time of
exposure matrices are obtained as output of a simulation informed by secondary data such
as transportation data [8]. A third approach relies on time use surveys: time of exposure
matrices are estimated from time use diaries, assuming that proportional mixing holds at
the level of single location and for short time slots [9].

In this paper, we first discuss the role of demographic and social structure in shaping
mixing patterns. We then propose a model that combines information from time use and
contact surveys. Finally, we test the ability of the model to fit serologic data and we use the
model to evaluate the impact of specific public health interventions.

Data

We use data for Italy, for which we have one of the most comprehensive and up-to-date
collections of social data (time use and contact surveys) and serologic data for varicella
zoster virus and parvovirus B19.

Data on time use were collected by the Italian National Statistical Agency (ISTAT) in
2002-2003 on a sample of about 24 thousand households. Time use data were collected in
the form of diaries in which the respondent records the activities that he did during the day
and the location where the activity took place.

The contact survey for Italy was collected as part of POLYMOD, a project funded by
the European Union. A sample of 849 respondents were asked to self report the number of
contacts they had during a randomly sampled day, together with some additional information
(see [7] for details).

Serological samples were collected and tested as part of POLYMOD for antibodies to
varicella zoster virus and parvovirus B19. These are infections for which vaccination pro-
grammes are not yet in place in Italy. Therefore the data describe the natural history of the
disease. The sample size is 2517 and the age of participants ranges from 0 to 79 years.
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The Model

In epidemiology, a fundamental quantity is the age-specific force of infection (λi), that is
the rate at which susceptible individuals in the age group i become infected. In standard
infectious diseases modeling, the force of infection is proportional to the transmission rates
between and within age groups, βij:

λi =
∑

j

βij × Yj (1)

where Yj is the number of infectives at steady state in age group j. Traditionally, the trans-
mission rates, which form the “who-acquires-infection-from-whom” matrix, are estimated
‘indirectly’ from epidemiological data, under suitable simplifying assumptions [1]. More re-
cently ‘direct’ approaches have been suggested: the transmission rates matrix is assumed
to be proportional to either a contact matrix or a time of exposure matrix estimated from
sample surveys [5, 9].

In the case of Italy, we have two independent data sources that give us information on
time of exposure (i.e., time use survey) and number of contacts (i.e., contact survey). In this
paper we propose a model that combines these two data sources.

We can think that a fraction s of the average time of exposure between groups i and j,
(Eij), is suitable for transmission of the disease in terms of proximity of contact, physical
condition of the location of contact, etc. People in the age groups i and j have a certain daily
number of contacts on average, (Cij), which differ in terms of duration. If we assume that a
person randomly distributes her/his suitable minutes for transmission to people she/he has
contact with, then some people may receive more than one suitable minute, whereas some
others may not receive any of them. If the disease is highly transmissible, what matters
for transmission between two people is that they have a contact with at least one suitable
minute of exposure. We call this kind of contact ‘suitable contact’. We do not know what
kind of contacts are ‘suitable’, but we assume that the likelihood that people experience at
least one such contact is positively related to the duration of their contacts.

If we think of our problem in these terms, we can use some results from classic probabil-
ity problems, such as the ‘occupancy problem’, to obtain the expected number of suitable
contacts between age groups i and j, (Aij)1:

E[Aij] = Cij(1− e−sEij/Cij) (2)

If we assume that the age-specific transmission rates are proportional to the age-specific
number of suitable contacts, then, by multiplying the quantity in expression 2 by a parameter
l that represents a disease-specific infectivity parameter, we obtain:

βij = l × Cij(1− e−sEij/Cij) (3)

The parameters l and s can be interpreted as ‘level’ and ‘shape’ parameters, respectively.
In this setting, high values of s give little importance to the exposure matrix and more
importance to the contact matrix. The level parameter l then ‘adjusts’ the structure of
suitable contacts to account for the degree of infectivity of the disease.
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The force of infection can be obtained by plugging equation 3 into equation 1. The
parameters s and l can be then estimated from serologic data, using a maximum likelihood
technique.

Preliminary Results and Discussion

Figure 1 shows a contour plot of the estimated average daily time that people in the age group
i spend with people in the age group j in Italy. The estimates are obtained, respectively, by
using the approach developed in [9] on Italian time use data and from the contact survey for
Italy [7]. In both cases, the highest values are on the main diagonal, implying assortativeness.
In the case of the contact matrix, the highest values are more concentrated along the main
diagonal, compared to the estimated time of exposure.

Figure 2 shows the fit of the model to serologic data, based on maximum likelihood
estimates for the parameters l and s: we observe a good fit to the seroprevalence data.

Both data on time use and number of contacts are available for single locations (e.g.,
school, home, workplace): we can thus use this information to obtain a more detailed repre-
sentation of contact patterns and we can write the elements of the β matrix as a combination
of suitable contacts in the n different settings considered:

βij = l × [C1
ij(1− e−s1E1

ij/C1
ij) + · · · + Cn

ij(1− e−snEn
ij/Cn

ij)] (4)

The representation in equation 4 allows us to evaluate the impact of specific interventions
such as school closure (e.g., elimination of the setting ‘school’ and adjustment of the other
settings to levels observed during vacation time) or behavioral changes (e.g., modification of
the s parameter for a specific setting). The effect of these interventions is discussed in the
paper.

Notes
1The result can be derived as follows. If we think of the number of suitable minutes of contact between

groups i and j, (sEij), as ‘balls’, and the number of contacts between groups i and j, (Cij), as ‘boxes’, then
the expected number of suitable contacts between the two age groups can be thought of as the expected
value of occupied boxes from randomly assigned balls.

To compute this expected value, define the indicator function

Zi =
{

1 if the contacted person i receives zero suitable minutes
0 otherwise

We have

E[Zi] = Pr[Zi = 1] = (1− 1
Cij

)
sEij

≈ e−sEij/Cij

Consider now Z =
∑Cij

i=1 Zi. The variable Z is the total number of contacted people who do not receive
any suitable minute of transmission. Its expected value is

E[Z] =
Cij∑

i=1

E[Zi] ≈
Cij∑

i=1

e−sEij/Cij = Cije
−sEij/Cij
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Figure 1: Mixing patterns for Italy estimated from time use and contact surveys.

Figure 2: Fit of the proposed model to serologic data for Italy. Points are serologic observa-
tions; dashed lines represent the fit of the model.
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