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The influence of genes on aging, health and longevity is mediated by thousands of 
biological and physiological variables which are also affected by environmental, 
behavioral and other factors. Some of such variables are measured in longitudinal studies 
of aging, health and longevity. That is why the data on genetic markers collected for 
participants of a longitudinal study are probably most appropriate for evaluating the 
genetic contribution to the aging-related decline in the health/well-being status and the life 
span. Such data, however, often cannot be collected for all participants of the study. This is 
because: (i) the large-scale collection of genetic data is a relatively new business, thus, 
some individuals, who initially participated in a longitudinal study, have already died or 
dropped out of a population; (ii) obtaining genetic information is still an expensive 
business and cannot be performed at the same scale as medical examinations or a 
sociological survey; (iii) not all individuals who agreed to participate in a medical 
examination or to respond to the survey’s questionnaire agree to participate in a genetic 
analysis. Thus, the presence of genetic information divide participants of a longitudinal 
study into two groups: one (the genetic group) includes those for whom genetic data were 
also collected. The other (the non-genetic group) consists of those for whom longitudinal 
data are available but genetic information was not collected.  

Such a situation when information on covariates essential for analyses of risks is 
missing for some sub-sample of individuals (either due to cost limitations or by the study 
design) is typical in epidemiological studies. For example, two-stage designs are routinely 
used in epidemiology when a disease status (or other general information) is ascertained 
for a large group of individuals at the first stage and information on covariates essential for 
analyses of their relation to the risk of the disease is collected at the second stage for 
smaller sub-samples of individuals. Statistical methods for analyses of such data are well 
developed for regression models. One of the main advantages of such methods is that they 
use information from the first and second stages to estimate regression parameters. This 
can lead to a considerable improvement in the efficiency of estimates compared to the 
estimates based on the second stage data alone. Applications of such designs and methods 
in genetic epidemiology are also discussed in the literature. 

A traditional way of evaluating effects of genes on individuals’ health/well-
being/survival status is to directly estimate respective hazards (e.g., incidence or mortality 
rate) for carriers of a selected allele (genotype). Such practice is completely justified in the 
absence of data about other factors and processes affecting these characteristics. The 
advantage of longitudinal data for the genetic studies of aging and longevity is in the 
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opportunity to estimate not only direct genetic effects on morbidity and mortality but also 
indirect genetic effects mediated by age trajectories of physiological variables collected in 
the longitudinal study (which may modulate mechanisms of aging not directly measured in 
longitudinal data).  

The purpose of this study is to elaborate a genetic model for studying longitudinal 
data on aging, health, and longevity which would permit: 1) joint analyses of genetic and 
non-genetic data to make use of all available information and increase the accuracy of 
estimates compared to analyses of genetic data alone; 2) evaluation of indirect genetic 
effects mediated by age trajectories of physiological variables collected in a longitudinal 
study; and 3) incorporation of essential mechanisms of aging-related changes in organisms 
that are not directly measured in longitudinal data but can be estimated from individual age 
trajectories of physiological indices and data on mortality or morbidity. The stochastic 
process model (SPM) of human mortality and aging (Manton and Yashin 2000;  Woodbury 
and Manton 1977;  Yashin 1985;  Yashin and Manton 1997) is the conceptual approach in 
this study and its extension presented here has all three above-mentioned properties. The 
important feature of the SPM is a biologically-justified U- or J- shaped risks as functions 
of respective indices. Such shapes of the risk functions are observed for different 
physiological indices. The original SPM was recently modified (Yashin et al. 2007a) to 
include major concepts of aging known to date: age-specific physiological norms 
(Lewington et al. 2002;  Palatini 1999;  Westin and Heath 2005), allostasis and allostatic 
load (Karlamangla et al. 2006;  Seeman et al. 2001), the decline in adaptive capacity with 
age (homeostenosis) (Lund et al. 2002;  Troncale 1996), the decline in stress resistance 
with age (Hall et al. 2000;  Ukraintseva and Yashin 2003;  Yashin et al. 2006), and 
stochasticity (Goldberger et al. 2002). The one- and two-dimensional versions of the model 
were successfully applied to different data sets to reveal complicated interplay among 
different components of aging-related changes in humans (Yashin et al. 2007b;  Yashin et 
al. 2007c;  Yashin et al. 2008). The model presented in this study is a step forward in 
analyzing contribution of genes to dynamic regularities in aging-related changes in a 
human organism. This model incorporates information on genetic markers collected for a 
sub-sample of participants of a longitudinal study and permits evaluation of all above-
mentioned characteristics (age-specific norms, decline in stress resistance, etc.), as well as 
respective hazard rates, for carriers and non-carriers of a selected allele (genotype) to 
address questions concerning genetic influence on these aging-related characteristics (here 
we formulated the model for two types of individuals: carriers and non-carriers of some 
selected allele/genotype, however, its extension to the case of many alleles/genotypes is 
straightforward). The method is based on extracting genetic information from the entire 
sample of longitudinal data consisting of genetic (those with available genetic information) 
and non-genetic (those for whom genetic information was not collected) sub-samples. The 
group of individuals with genetic data becomes automatically divided into subgroups of 
carriers and non-carriers of respective alleles or genotypes. The non-genetic group consists 
of carriers of the same genotypes identified in the genetic group and, hence, non-genetic 
data contain information about genetic influence on all phenotypes observed in a 
longitudinal study. We developed statistical methods for extracting genetic information 
from the entire sample of longitudinal data consisting of genetic and non-genetic sub-
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samples. This joint analysis results in a substantial increase in the accuracy of statistical 
estimates of genetic parameters (without collecting additional genetic data) compared to 
methods that use only information from a genetic sub-sample. Simulation studies 
illustrated the increase in the accuracy in different scenarios for datasets structurally 
similar to the Framingham Heart Study (FHS) (Dawber et al. 1951). The model was 
applied to the FHS data (exams 1-26) that contain information on: Angiotensin I 
converting enzyme (ACE) and Apolipoprotein E (APOE) common polymorphisms for a 
sub-sample of the participants (“genetic sub-sample”), detailed longitudinal information on 
different physiological indices (such as blood pressure, pulse pressure, pulse rate, serum 
cholesterol, blood glucose, hematocrit, and body mass index) and risks of chronic 
degenerative diseases (such as cardiovascular disease, stroke, cancer, diabetes, 
hypertension) and mortality risk for the entire sample (“genetic” and “non-genetic” sub-
samples). The proposed innovative advanced tool for statistical analyses of such data 
allows for capturing systemic regularities of changes in health/well-being/survival status in 
an aging human organism.  
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