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Abstract
It is well known that the conventional linear age-period-cohort model suf-

fers from an identification problem: If we assume that an outcome of interest
depends on the sum of an age effect, a period effect and a cohort effect, then
it is impossible to distinguish the separate effects of age, period and cohort
because, for any individual, birth year = current year − age. Less well appreci-
ated is that the model also suffers from a conceptual problem: It assumes that
the influence of age is the same in all time periods, the influence of present
conditions is the same for people of all ages, and cohorts do not change over
time. We argue that in many substantive applications of APC analysis, these
assumptions fail. We propose a more general model of age, period and cohort
effects in which age profiles can change over time; period effects can have dif-
ferent influences on people of different ages; and cohorts can evolve from one
period to the next. Our model operationalizes Ryder’s (1965) concept of cohort
effects as an accumulation of age-by-period interactions. We show that the ad-
ditive model is a special case of our model and that, except in special cases,
the parameters of the more general model are identified. We apply our model
to analyze changes in age-specific mortality rates in Sweden over the past two
centuries.
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1 Introduction

Social scientists conceive of many phenomena as depending on age, period, and

cohort (APC) effects. For example:

• In demography, vital rates may depend on a person’s age, on environmental

conditions in the current year (period), and on conditions early in life that

created scarring or selection effects (cohort).

• In sociology, behaviors such as going to college or forming a family may depend

on individual physiological and social development (age), on major historical

events and social structural changes that individuals encounter in the current

year (period), and on formative experiences of groups of individuals coming of

age in different historical and social contexts (cohort).

• In economics, consumption inequality among a group of people born in the same

year may depend on stages of the life cycle (age), on economic conditions in the

current year (period), and on the group’s initial level of inequality (cohort).

Despite the analytic importance of age, period and cohort effects, how to empiri-

cally distinguish them is among the best-known and longest-standing methodological

problems in the social sciences. Age, period, and cohort are linearly dependent; for

any person, birth year = current year − age. Therefore, a linear regression model

can include at most two of these three variables as regressors. The problem persists

even if one specifies age, period, and cohort effects non-parametrically with dummy

variables for each possible value, as in the additive model

yat = αa + βt + γj, j = t− a, (1)
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where yat is some outcome for people of age a in year t (who are therefore members

of birth cohort j = t − a); αa is the effect of being age a; βt is the effect of living in

year t; and γj is the effect of being a member of cohort j. The separate effects of age,

period, and cohort cannot be distinguished in the additive model (1) because, if (1)

is true, then for any constant δ, we also have

yat = (αa + δa) + (βt − δt) + (γj + δj). (2)

That is, age, period, and cohort effects are identified only up to an unknown trend δ.

Even though the additive model (1) is not identified, it has been widely adopted

to study age, period, and cohort effects. (Examples date to Greenberg et al., 1950;

for reviews, see, e.g., Hobcraft et al., 1982 and Robertson et al., 1999.) Researchers

typically solve the identification problem by imposing one or more constraints on the

parameters (e.g., Deaton and Paxson, 1994; Mason et al., 1973; Mason and Smith,

1985). But such constraints are often unsatisfying because they must depend on

potentially unavailable outside information, on the researcher’s subjective preferences,

or on purely mathematical (as opposed to substantive) considerations.

We approach the APC identification problem by noticing and then resolving a

conceptual problem. The additive model (1) is a quite simple approximation to the

process of social change and does not adequately describe most of the phenomena

where age, period, and cohort effects are of interest:

• The additive model specifies that the influence of age is the same in all time

periods and for all cohorts. In fact, however, the influence of age changes over

time and across cohorts; consider, for instance, the dramatic declines in infant

mortality over the past century (United Nations Demographic Yearbook, 1997).
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• The additive model specifies that the influence of conditions in the present period

is the same for people of all ages. In reality, period effects are often age-specific;

for example, the influenza epidemic of 1918 caused especially high mortality

among people in their teens and twenties (Noymer and Garenne, 2000).

• The additive model specifies that cohorts do not change over time. But cohorts

must change, not least because – most obviously in the context of studies of mor-

tality – some members of the cohort die each year, and they are not necessarily

identical to those who remain alive (Vaupel et al., 1979).

Cohorts can also change over time for reasons other than composition effects. As

Ryder (1965) explained in his seminal article:

The case for the cohort as a temporal unit in the analysis of social

change rests on a set of primitive notions: persons of age a in time t are

those who were age a − 1 in time t − 1; transformations of the social

world modify people of different ages in different ways; the effects of these

transformations are persistent.

In other words, cohort effects arise because different cohorts live through different

social events, or live through the same events at different ages. But because cohort

effects result from living through social events, a model with unchanging cohort ef-

fects is appropriate only if the relevant events occur before the initial observation and

only if these events’ impact stays fixed as the cohort ages (Hobcraft et al., 1982).

One can model the effect of events experienced at earlier ages by including lagged

period effects if these events and conditions affect all age groups similarly. However,

if, as Ryder argues, cohorts are continuously exposed to events that affect people of

different ages in different ways, one needs a more general model – a framework that

(Hobcraft et al., 1982) labeled “continuously accumulating cohort effects.” Despite
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the widespread theoretical influence of Ryder’s paper, the concept of continuous co-

hort change appears never to have been mathematically formalized or taken to data.

We fill this gap by developing a new model of age, period, and cohort effects that

can accommodate the various processes of change described above. In our model, age

profiles can change over time, period effects can have different influences on people

of different ages, and cohorts can evolve from one period to the next. Our model

operationalizes Ryder’s concept of continuously evolving cohort effects and specifies

both age profiles and cohort effects as accumulations of age-by-period interactions.

We show that our model nests the additive model as a special case. Apart from a set

of measure zero of special cases, however, the parameters of our model are identified,

unlike those of the additive model.

Previous researchers, of course, also extended the APC accounting model (1) to

include interactions (Fienberg and Mason, 1985; James and Segal, 1982; Moolgavkar

et al., 1979). Our model differs from previous models of interactions both substan-

tively and mathematically. Our model allows outcomes to depend on the accumu-

lation of all the events a group of people experiences over the life course, whereas

previous models have assumed that only events in the birth year and in the present

year are relevant and that the influence of the birth year never changes. Previous

models, further, remain unidentified because the additive part can never be identified

without additional constraints.

The paper proceeds as follows. In section 2, we describe the model and discuss

how to interpret its parameters. In section 3, we analyze conditions under which the

parameters are identified when outcomes are measured without error, while section

4 extends the analysis to allow measurement error. Section 5 applies the model to

analyze the evolution of human mortality – a fundamentally important phenomenon

in demography, and section 6 concludes. Proofs appear in the appendix.
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2 Model

We model an outcome yat as an accumulation of age-by-period interactions. Specif-

ically, there are K ≥ 1 sequences of time effects e1, . . . , eK , where K is assumed to

be known a priori . Each sequence ek is a list of time effects in various years s:

ek = {ek,s}∞s=−∞. Time effects that occur in year s affect every cohort alive in that

year. However, the impact may depend on the cohort’s age and on which sequence

contains the time effect: wk,aek,s is the contribution of time effects from sequence k

in year s to the outcomes of people who are age a in year s. We refer to wk,a as the

age weight for sequence k at age a. Each sequence of time effects should be thought

of as representing a different factor that contributes to the outcome of interest. For

example, if the outcome is mortality, one sequence of time effects might represent

environmental conditions that affect infant mortality and another might represent

medical technologies that affect the mortality of older people.

Past time effects’ influence may increase or fall off over time. We let rk ≥ 0 be

the rate of increase or decay, so rt−sk wk,aek,s is the impact in year t of time effects

from sequence k occurring in year s for people who were age a in year s. (We leave

for future research the problem of modeling time effects whose influence alternates

between positive and negative effects or decays in a non-exponential pattern.) We

add an intercept and sum up the entire history of time effects to obtain our model

for the outcomes for a particular cohort in a particular year:

yat = µ+
K∑
k=1

a∑
a′=0

ra−a
′

k wk,a′ek,t−a+a′ . (3)

We now consider how to interpret the parameters of the model shown in equation

(3). For some parameter values, age and cohort effects in our model evolve over time.

For other parameter values, our model generates time-invariant age effects, time-
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invariant cohort effects, and period effects that have the same influence on people of

all ages. We first discuss the parameter values that generate these pure effects before

showing how other parameter values can produce effects that evolve over time.

• Pure age effects: Suppose that, for the kth sequence of time effects, the same

time effects occur every year: ek,s = ēk for all years s. Then the contribution

of this sequence of time effects to outcomes for people of age a in year t is∑a
a′=0 r

a−a′

k wk,a′ ēk, which depends only on age a, not on the period t or the

cohort j = t− a.

• Pure period effects: Suppose that, for the kth sequence of time effects, rk =

0 and wka = 1 for all a. We adopt the convention that 00 = 1. Then the

contribution of the kth sequence to outcomes for age a in year t is simply ekt ,

which depends only on the current year and not on age or birth year.

• Pure cohort effects: Suppose that, for the kth sequence of time effects, rk = 1,

wk0 = 1 and wka = 0 for a > 0. Then the contribution of the kth sequence to

outcomes for age a in year t is simply ekt−a, which depends only on the birth

year j = t− a and not separately on age or the current year.

Because our model can generate pure age, period and cohort effects, it nests the

additive model (1). Specifically, suppose that K = 3, e1,s = ē1 for all s, r2 = 0,

w2,a = 1 for all a, r3 = 1, w3,0 = 1, and w3,a = 0 for a > 0. Then (3) reduces to

yat = µ+
a∑

a′=0

ra−a
′

1 w1,a′ ē1 + e2,t + e3,j, j = t− a, (4)

which is equivalent to (1) with αa = µ+
∑a

a′=0 r
a−a′

1 w1,a′ ē1, βt = e2,t and γj = e3,j.

Researchers are often interested in estimating an age profile of outcomes. For

example, how does the mortality rate depend on age? Or, how does within-cohort
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consumption inequality change as the cohort ages? A major goal of our model is to

make it possible to estimate such age profiles while allowing the possibility that the

age profile is not the same for all cohorts. In our model, we conceive of changes in

the age profile over historical time as changes in the time effects that accumulate for

different cohorts. Permanent changes in time effects lead to permanent changes in

the age profile. Define mk(a) =
∑a

a′=0 r
a−a′

k wk,a′ . Then a hypothetical cohort that

experienced the same time effects (ē1, ē2, . . . , ēK) in every year of its life would, at

age a, have outcomes

ya(ē1, ē2, . . . , ēK) = µ+
K∑
k=1

ēkmk(a), (5)

which depends only on the cohort’s age a. Now consider a different hypothetical

cohort that experienced a different set of constant time effects (ẽ1, ẽ2, . . . , ẽK) in every

year of its life. The second cohort would have outcomes

ya(ẽ1, ẽ2, . . . , ẽK) = µ+
K∑
k=1

ẽkmk(a). (6)

The outcomes in (6) again depend only on the cohort’s age, but they differ from the

outcomes of the first hypothetical cohort in (5). Thus, given any set of time effects,

we can calculate the hypothetical age profile that would result if those time effects

continued for the entire life of a cohort. So, for example, we can calculate different

age profiles corresponding to the time effects of 1900 and the time effects of 2000:

ya(e1,1900, e2,1900, . . . , eK,1900) = µ+
K∑
k=1

ek,1900mk(a),

ya(e1,2000, e2,2000, . . . , eK,2000) = µ+
K∑
k=1

ek,2000mk(a).

(7)
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The profile ya(e1,1900, e2,1900, . . . , eK,1900) tells us the effect of age on outcome y in

1900. We can interpret ya(e1,1900, e2,1900, . . . , eK,1900) as a prediction for the outcomes

of the 1900 birth cohort if conditions never changed after the cohort’s birth. In other

words, ya(e1,1900, e2,1900, . . . , eK,1900) describes the effect of age on outcomes y, holding

time effects constant. Similarly, the profile ya(e1,2000, e2,2000, . . . , eK,2000) tells us the

effect of age on outcome y in 2000. By comparing the profiles, we can see how the

effect of age on y changed over the 20th century.

3 Identification

We have claimed that one advantage of our model over the additive model (1) is

that the parameters of our model are identified. We now make this claim precise.

Because the additive model is unidentified even when (1) does not contain an error

term, we assume for now that the outcomes yat are measured without error; in section

4, we show how to handle measurement error. We consider identification when the

data consist of an (A + 1) × T matrix of outcomes for ages a = 0, . . . , A and dates

t = 1, . . . , T , such as a table of age-specific mortality rates in various years. We leave

extensions to other data structures for future research.

We say the parameters of our model are identified if there exists a unique set of

parameters that can generate any given matrix of outcomes yat. That is, the param-

eters are identified if there is a unique vector θ =
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]
such that (3) holds for all a and t. It turns out that our model is identified for some

values of the true parameters and not for other values. The following definition is

therefore helpful:

Definition. The parameter vector θ, an element of a parameter space Θ, is identified

with respect to Θ if there does not exist any vector θ̃ ∈ Θ distinct from θ such that,
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given
{
{yat}Aa=0

}T
t=1

, (3) holds for both θ and θ̃ for all a = 0, . . . , A and t = 1, . . . , T .

Under normalizations on the parameter space Θ that do not affect the interpre-

tation of the model, the set of parameter vectors that are not identified with respect

to Θ is of measure zero. The normalizations are:

Normalization 1. rk ≤ rk′ for all k < k′.

Normalization 2. wk,0 = 1 for all k.

Normalization 3. If K > 1, then ek,s = 0 for s < k − A.

Normalization 1 puts the time effect types in order, which is necessary because

switching k with k′ would not change the model. (We show below that the unidentified

set of measure zero includes the case rk = rk′ , so the ordering is strict.) Normalization

2 fixes the sign and scale of the age weights wk,a and the time effects ek,s; for any

ck 6= 0, replacing wk,a by ckwk,a for all a and ek,s by ek,s/ck for all s would not

change the model. The normalization does not affect the interpretation of results since

only the product wk,aek,s enters the age profiles (5). Finally, we need normalization

3 because the data do not contain adequate information about time effects in the

distant past. The normalization is equivalent to dropping all data on the K oldest

cohorts. To see why, notice that time effects ek,s at any date s ≤ K − A influence

only the K oldest cohorts; that there are K2 such time effects eks in the model; and

that we have K(K + 1)/2 ≤ K2 observations (with strict inequality for K > 1) on

the K oldest cohorts. We therefore have no hope of identifying all the time effects

at dates s ≤ K − A. In addition, by appropriately choosing {ek,s}s≤k−A, we can

perfectly fit the data on the K oldest cohorts regardless of how we choose r, w, µ

and {ek,s}s>K−A. Since the K oldest cohorts are uninformative, we could drop them

and avoid estimating {ek,s}s≤k−A. Equivalently, we can normalize some elements of
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{ek,s}s≤k−A to zero. Since the normalization does not affect r,w, µ, {ek,s}s>K−A, it

does not affect the substantive results.

Proposition 1. Let K ∈ {1, 2, 3} be known, and let the parameter space Θ consist

of all vectors
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=0, rk

}K
k=1

]
that satisfy normalizations 1 to 3.

Suppose further that A ≥ K, that T ≥ A + K, and that if K = 1, then T ≥ 4; if

K = 2, then T ≥ 12; and if K = 3, then T ≥ 32. Then there exists a set XK ⊂ Θ

such that XK is of measure zero and all θ ∈ Θ \XK are identified.

Proposition 1 says there may be parameter vectors θ that are not identified: For

each of these θ, there exists some θ′ 6= θ that would generate the same data as θ.

However, the set X of unidentified parameter vectors is of measure zero. For almost

all θ, therefore, there does not exist any θ′ 6= θ that would generate the same data,

and by observing yat, we can uniquely determine the true parameter vector θ. We

have not proved versions of proposition 1 for K > 3, but we conjecture that it holds;

a proof would require tedious algebra.

The conditions in proposition 1 are sufficient but not necessary for identification.

In particular, the parameters may be identified for T smaller than the values stated,

so long as A is sufficiently large. We have not completely characterized the sets XK

of unidentified parameter vectors. In one sense, this is unimportant since almost all

parameter vectors lie outside XK . However, to understand the source of identification,

it is helpful to partially characterize XK . The next proposition gives some necessary

conditions for a parameter vector to be identified.

Proposition 2. Under the hypotheses of proposition 1, any parameter vector θ ∈ Θ

is not identified if either:

(a) ek,t = ēk for some k and all t = 1− A, . . . , T , or

(b) K > 1 and rk = rk′ for some k 6= k′.
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Further, θ remains unidentified in each of these cases even if µ is known.

Condition (a) in proposition 2 is the case where the model contains pure age

effects. Therefore, although the additive model (1) is a special case of our model,

it is an unidentified special case. We emphasize that the potential need to identify

the intercept µ has nothing to do with this failure of identification. It is clear that

pure age, period or cohort effects will be unidentified in our model without some

normalization on µ for the usual reason that – even without the APC identification

problem – one dummy variable in any given category must be omitted in any linear

model that contains an intercept. But proposition 2 shows that pure age effects

will remain unidentified even with a normalization on µ. The intuition is as follows.

Suppose the same time effect happens over and over, i.e., ek,t = ēk. Then it will

be impossible to distinguish whether this time effect has a transitory impact that

directly affects people of all ages (a period effect) or a persistent impact that directly

affects only the young (so that the effect on the old is indirect, a cohort effect). Pure

age effects, in other words, make it impossible to distinguish period from cohort.

4 Identification With Measurement Error in y

Suppose that, instead of observing yat, we have data only on a noisy measurement

ȳat, where

ȳat = yat + εat. (8)

For example, yat could be the probability of death for individuals age a in year t, and

ȳat could be the observed mortality rate, which is a random variable with mean yat

when the population is finite. Alternatively, yat could be a measure of consumption

inequality among all people age a in year t, and ȳat could be an estimate of inequality
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calculated from a random sample of the population. We now show conditions on the

measurement error εat under which our model remains identified.

Assumption 1. E[εat|yat] = 0 and E[ε2a,t|yat] = σ2 for all a, t, and E[εa,tεa′,t′ |yat, ya′t′ ] =

0 whenever a′ 6= a or t′ 6= t.

Assumption 1 restricts the variance-covariance matrix of the measurement error.

We must impose such a restriction because age-period-cohort analysis is, in essence,

a decomposition of variance. In section 5, we will consider an application in which

assumption 1 is plausible.

Proposition 3. Suppose assumption 1 and the hypotheses of proposition 1 hold. Let

θ̂ = arg min
θ̃

A∑
a=0

T∑
t=1

(
ȳat − µ̃−

K∑
k=1

a∑
a′=0

r̃a−a
′

k w̃k,a′ ẽk,t−a+a′

)2

. (9)

Then, subject to regularity conditions on εat:

(a) θ̂
p→ θ in the limit as σ2 → 0 with A and T fixed, and

(b) If ek,t is a stationary and ergodic process, then
({
{ŵk,a}Aa=1, r̂k

}K
k=1

, µ̂
) p→

({
{wk,a}Aa=1, rk

}K
k=1

, µ
)

in the limit as T →∞ with A fixed.

Proposition 3 says certain parameters can be consistently estimated by nonlinear

least squares when outcomes are measured with uncorrelated, homoskedastic, mean-

zero error. In the limit as the variance of the measurement error goes to zero, all of

the parameters can be consistently estimated; this limit applies when ȳat is computed

from large populations in each (a, t) cell, as in the case of mortality rates calculated

from vital records. In the limit as T goes to infinity with A fixed – as when small sam-

ples are collected in each of many years – all parameters except the time effects ek,t can

be consistently estimated; parameters indexed by t cannot be consistently estimated
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because adding data on new time periods does not add information about parameters

relevant only to earlier time periods. We do not consider limits as A goes to infinity

because the human life span is finite. One can test whether the homoskedasticity re-

quirement (E[ε2a,t|yat] = σ2) in assumption 1 holds by examining whether the squared

residuals
(
ȳat − µ̂−

∑K
k=1

∑a
a′=0 r̂

a−a′

k ŵk,a′ êk,t−a+a′

)2

are systematically related to the

predicted values ŷat = µ̂+
∑K

k=1

∑a
a′=0 r̂

a−a′

k ŵk,a′ êk,t−a+a′ .

5 Example: Mortality Rates in Sweden

In Western developed countries, the demographic transition in the past two hun-

dred years featured gradual mortality declines in response to improvements in features

of the environment including water quality, sanitation, nutrition, prevalence of infec-

tious diseases, and medical technology (Elo and Preston, 1992; Omran, 1982). How

did these changes impact mortality for various birth cohorts? And how did they

differentially affect people of different ages? We answer these questions by applying

our model to estimate the age profiles of mortality under present and past conditions

using the long time series of high quality mortality data from Sweden in the Human

Mortality Database (2007). Our approach is to compare the observed and model-

predicted age-specific mortality rates across cohorts. Because our model yields age

profiles under the hypothetical scenario in which conditions at birth remain constant

and operate throughout (and hence accumulate over) a cohort’s life, discrepancies be-

tween the predicted and actual age profiles indicate changes in conditions in historical

time.

We analyze the 5-by-5 table of mortality rates for ages 0-4, 10-14, . . . , 75-79 and

years 1800-1804, 1805-1809, . . . , 2000-2004, dropping older ages and earlier years due

to data quality concerns discussed in the data documentation. (We do not use annual
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data for the same reason.) Figure 1 displays the data. Infant mortality has decreased

proportionately much more than adult mortality over the past two centuries – exactly

the kind of shift in an age profile of outcomes that our model aims to capture.

The dependent variable we analyze is the natural logarithm of the realized mor-

tality rate among people who are age a in year t. We treat (3) as a model of the

underlying log probability of death and (8) as a model of log realized mortality, which

randomly differs from the log probability of death in a finite population. We estimate

the model by nonlinear least squares as in (9), weighting each age-year cell by a con-

sistent estimate of the inverse of the variance of observed log mortality in that cell.

Appendix B shows that this procedure is equivalent to maximum likelihood.

We estimate four models: the additive model (1) as well as the continuously

accumulating model (3) for K = 1, K = 2 and K = 3. (We did not attempt

models with K > 3 due to the large number of parameters involved.) Our purpose

in estimating the additive model is not to interpret its parameters but only to test it

against the more general K = 3 model in which it is nested. For this purpose, the

failure of identification in the additive model does not cause problems: We need to

obtain only the log likelihood of the additive model, which does not depend on which

single identifying constraint we impose on the parameters.

We will present results at the PAA meeting.

6 Conclusion

The conventional linear model of additive age, period, and cohort effects has

been widely used to analyze tabular population level data. The literature, however,

often concludes that it is impossible to obtain meaningful estimates of the distinct

contributions to social change of age, time period, and cohort. The methodological
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problem underlying this conclusion is well recognized: In the additive model, one must

resolve the identification problem induced by the exact linear dependency between

age, period, and cohort indicators by imposing some identifying constraint, and there

is no consensus as to what constitutes a satisfactory constraint.

In this paper, we emphasize that the APC identification problem is inevitable only

under the conventional specification of fixed, additive age, period, and cohort effects.

But additive effects are merely one approximation to the process of social change. A

prominent example of an alternative process is that of continuously accumulating or

evolving cohort effects, described decades ago by social demographers who also noted

the absence of procedures for empirically investigating such a process (Hobcraft et al.,

1982; Ryder, 1965). It is this process that we attempt to model in this paper.

The new model relaxes the assumption of the conventional additive model that

the influence of age is the same in all time periods, the influence of present conditions

is the same for people of all ages, and cohorts do not change over time. We show

that the failure of identification in the conventional model stems precisely from the

strong assumptions it makes. When we generalize the model to allow age profiles

to change over time, period effects to have different influences on people of different

ages, and cohorts to evolve from one period to the next, we obtain a model that is

identified. More important, we can better capture the essence of social change by

taking into account the fact that cohorts are continuously exposed to influences that

cumulatively alter their trajectories. As an example, our data analysis illustrates the

utility of this model in studying the evolution of human mortality. Estimates of age

profiles of mortality allow us to discern the effects of various historical conditions in

shaping cohort mortality at specific ages. We believe that, beyond demography, this

model can find wide application in economics, sociology, and political science and can

potentially provide new stylized facts that are fundamental to construction of basic
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explanations and evaluation of theories of social change and structure.

A Proofs

A.1 Proposition 1

We prove the result separately for K = 1, K = 2 and K = 3. In each case, the

strategy will be to construct a set XK ⊂ Θ such that XK is of measure zero and such

that, unless θ =
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]
is in XK , the equality

µ+
K∑
k=1

a∑
a′=0

ra−a
′

k wk,a′ek,t−a+a′ = µ̃+
K∑
k=1

a∑
a′=0

r̃a−a
′

k w̃k,a′ ẽk,t−a+a′ , a = 0, . . . , A, t = 1, . . . , T,

(A.1)

implies, under the hypotheses of the proposition, that
[
µ,
{
{ek,t}Tt=1−A, {wk,a}Aa=1, rk

}K
k=1

]
=[

µ̃,
{
{ẽk,t}Tt=1−A, {w̃k,a}Aa=1, r̃k

}K
k=1

]
≡ θ̃.

Case 1: K = 1. Let X1 be the set of θ ∈ Θ such that either r1 + w1,1 = 1 or the

vectors (e1,1, . . . , e1,T−1) and (e1,2, . . . , e1,T ) are collinear with a constant. X1 is a set

of measure zero. Assume θ ∈ Θ \X1. Specializing (A.1) to K = 1, a = 0 and a = 1

(by hypothesis, A ≥ 1) and using normalization 2, we have

µ+ e1,t = µ̃+ ẽ1,t, t = 1, . . . , T, (A.2a)

µ+ r1e1,t−1 + w1,1e1,t = µ̃+ r̃1ẽ1,t−1 + w̃1,1ẽ1,t, t = 2, . . . , T. (A.2b)

Substituting (A.2a) into (A.2b) and collecting terms gives

0 = (µ− µ̃)(1− r̃1 − w̃1,1)− (r̃1 − r1)e1,t−1 − (w̃1,1 − w1,1)e1,t, t = 2, . . . , T. (A.3)
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By hypothesis, T ≥ 4, so (A.3) contains at least three equations. Since (given θ /∈ X1)

e1,t−1 and e1,t are not collinear with a constant, (A.3) can hold only if (µ − µ̃)(1 −

r̃1 − w̃1,1) = 0 and the coefficients on e1,t−1 and e1,t are both zero. Hence r̃1 = r1,

w̃1,1 = w1,1, and, since 1− r1 − w1,1 6= 0 for θ /∈ X1, we must have µ̃ = µ. It follows

from (A.2a) that ẽ1,t = e1,t for t = 1, . . . , T . Finally, substituting the foregoing results

into (A.1) for a ≥ 2 shows that ẽ1,t = e1,t for t ≤ 0 and w̃1,a = w1,a for a ≥ 2.

Case 2: K = 2. Define the following sets:

X2,1 = {θ ∈ Θ : ∃k s.t. rk = 0}, X2,2 = {θ ∈ Θ : r1 = r2},

X2,3 = {θ ∈ Θ : w1,1 = w2,1},

X2,4 =


θ ∈ Θ : rank


1

...

1


ek,j

...

ek,T−4+j


k∈{1,2},

j∈{1,2,3,4}

 < 9


,

X2,5 = {θ ∈ Θ : (w1,1 − w2,1)[−r2w1,1 + r1w2,1] + (w1,2 − w2,2)(r2 − r1) = 0},

X2,6 = {θ ∈ Θ : w1,1 − w2,1 + r1 − r2 + (r2
2 + r2w2,1 + w2,2)(1− r1 − w1,1)

− (w1,2 + r1w1,1 + r2
1)(1− r2 − w2,1) = 0}.

(A.4)

Let X2 = ∪6
j=1X2,j. X2 has measure zero. Our web appendix shows that under

normalizations 1 to 3 and the hypotheses of the proposition, if θ ∈ Θ \X2, then the

unique solution to (A.1) is θ̃ = θ. The algebra proceeds by using (A.1) at a = 0 and

a = 1 to eliminate ẽ2,t and obtain a first-order difference equation in ẽ1,t; substituting

the difference equation into (A.1) at a = 2 to eliminate ẽ1,t; and observing that

coefficients in a linear combination of a constant with {ek,t−3, . . . , ek,t}2
k=1 must be

zero given θ /∈ X2,4. Setting the coefficients to zero yields quadratic equations with

two solutions, (r̃1, r̃2) = (r1, r2) and (r̃1, r̃2) = (r2, r1); normalization 1 rules out the

latter to give uniqueness.
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Case 3: K = 3. The approach parallels the K = 2 case; see the web appendix.

A.2 Proposition 2

We must show that under each of conditions (a) and (b), (A.1) has multiple

solutions for (µ̃, r̃, ẽ, w̃) in terms of (µ, r, e,w), and that this is so even if µ̃ = µ.

Condition (a): Without loss of generality, suppose e1,t = ē1. Choose any r∗ ∈

[0, 1]. Let {w∗a}Aa=1 be the unique solution to the following nonsingular triangular

system of linear equations given r∗, r1 and {w1,a}Aa=1:

a∑
a′=1

(r∗)a−a
′
w∗a′ = −(r∗)a +

a∑
a′=0

ra−a
′

1 w1,a′ , a = 1, . . . , A. (A.5)

Given e1,t = ē1, the following solves (A.1): µ̃ = µ; ẽj,t = ej,t ∀ j, t; r̃1 = r∗; r̃j =

rj ∀ j > 1; w̃1,a = w∗a ∀ a; w̃j,a = wj,a ∀ j > 1, a. Therefore, (A.1) has a continuum of

solutions indexed by r∗ ∈ [0, 1].

Condition (b): Without loss of generality, suppose r1 = r2. Choose any x ∈

(1/2, 1]. Given r1 = r2, the following solves (A.1): µ̃ = µ; r̃j = rj ∀ j; w̃1,a =

xw1,a + (1 − x)w2,a ∀ a; w̃2,a = (1 − x)w1,a + xw2,a ∀ a; ẽ1,t = (1−x)e2,t−xe1,t

1−2x
∀ t;

ẽ2,t = (1−x)e1,t−xe2,t

1−2x
∀ t; ẽj,t = ej,t ∀ j > 2, t; w̃j,a = wj,a ∀j > 2, a. Therefore, (A.1)

has a continuum of solutions indexed by x ∈ (1/2, 1].

A.3 Proposition 3

We assume the distribution of εat satisfies regularity conditions such that a uniform

law of large numbers (ULLN) holds. Case (a): If σ2 = 0, (9) becomes (A.1); hence

the true parameters uniquely solve (9) when σ2 = 0. Since the objective function in

(9) is continuous, a ULLN applies, and solutions for σ2 > 0 converge to the solution

for σ2 = 0. Case (b): Note that the predicted values can be written as ŷ(w̃, r̃, µ̃, ẽ) =
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X(w̃, r̃, µ̃)ẽ and hence, if we solve (9) for ê as a function of the remaining parameters,

we obtain ê = [X(w̃, r̃, µ̃)′X(w̃, r̃, µ̃)]−1X(w̃, r̃, µ̃)′(y + ε). (The inverse should be

interpreted as a generalized inverse when X(w̃, r̃, µ̃) is not of full rank. Substituting

this solution into (9), we obtain

({
{ŵk,a}Aa=1, r̂k

}K
k=1

, µ̂
)

= arg min
w̃,r̃,µ̃

{[
y −X(w̃, r̃, µ̃)[X(w̃, r̃, µ̃)′X(w̃, r̃, µ̃)]−1X(w̃, r̃, µ̃)′(y + ε) + ε

]}′
[
y −X(w̃, r̃, µ̃)[X(w̃, r̃, µ̃)′X(w̃, r̃, µ̃)]−1X(w̃, r̃, µ̃)′(y + ε) + ε

]
= arg min

w̃,r̃,µ̃

{
(y + ε)′M(w̃, r̃, µ̃)′M(w̃, r̃, µ̃)(y + ε)

}
= arg min

w̃,r̃,µ̃

{
y′M(w̃, r̃, µ̃)y + 2y′M(w̃, r̃, µ̃)ε + ε′M(w̃, r̃, µ̃)ε

}
(A.6)

where M(w̃, r̃, µ̃) = I−X(w̃, r̃, µ̃) is a symmetric and idempotent matrix. Since ek,t is

stationary and ergodic, so is yat, and so the ergodic theorem and ULLN apply to the

new objective function. Hence as T →∞, the second term in the objective function

converges uniformly in probability to zero. Further, since εat is serially uncorrelated

and homoskedastic by assumption 1, the third term converges uniformly in probability

to σ2tr[M(w̃, r̃, µ̃)]. Since M is idempotent, its trace equals its rank, which is no

smaller than its rank when X(w̃, r̃, µ̃) has full rank. At the true parameters, X has

full rank. Hence, in the limit as T →∞, the true parameters minimize the third term.

Further, in the limit as T → ∞, the first term converges uniformly in probability

to a function that is zero at the true parameters and, by proposition 1, strictly

positive otherwise. Thus the objective function converges uniformly in probability to

a function minimized by the true parameters. It follows that
({
{ŵk,a}Aa=1, r̂k

}K
k=1

, µ̂
)

converges in probability to the true parameters.
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B Equivalence of weighted NLS and MLE

Suppose each individual who is age a at time t has a probability of death pat, and

let Nat be the population at risk in cell (a, t). If p̄at is the realized mortality rate

in the cell, then by the central limit theorem,
√
Nat(p̄at − pat)

d→ N [0, pat(1 − pat)]

as Nat → ∞. (The smallest cell in our data has Nat = 97, 551, and the median cell

has Nat = 1, 570, 678, so approximating the distribution by the limit as Nat → ∞

seems reasonable.) By the delta method,
√
Nat(ln p̄at − ln pat)

d→ N [0, (1− pat)/pat].

We observe realized log mortality ȳat ≡ ln p̄at and population Nat but not true log

mortality yat ≡ ln pat; indeed, the goal is to estimate parameters determining yat. But

p̄at
p→ pat, so by the continuous mapping theorem,

√
Natp̄at/(1− p̄at)(ȳat − yat)

d→

N (0, 1). If pat depends on parameters θ, the log likelihood for data on ages a =

0, . . . , A and years t = 1, . . . , T is lnL = − (A+1)T
2

ln (2π) − 1
2

∑A
a=0

∑T
t=1

Natp̄at

1−p̄at
[ȳat −

yat(θ)]2. Maximizing the likelihood is thus equivalent to minimizing the weighted

nonlinear least squares objective function for the model ȳat = ln (pat(θ)) + εat with

weights σ̂2
at = Natp̄at/(1− p̄at). The minimized WNLS objective function, divided by

the residual degrees of freedom, is an estimate of dispersion; the dispersion should be

1 if the model fully accounts for variation in mortality. In practice, since we estimate

dispersion greater than 1, we compute the log likelihood and standard errors without

assuming the dispersion equals 1.
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Figure 1: Mortality in Sweden at five-year intervals, 1800-2004.

Each line shows the realized mortality of a particular birth cohort at various
ages. Cohorts included are those born in 1721 through 2004. Lines for cohorts
born before 1800 or after 1929 omit some ages because the dataset does not
cover those ages for those cohorts. Data source: Human Mortality Database
(2007).
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