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1 Introduction

Many factors influencing mortality are not limited to their country of discov-
ery - both germs and medical advances can transcend borders. How can we
consider the impact of common factors on the future mortality of different
countries? We suggest using a country-aggregated measure of mortality, the
best-practice line - the average length of life in the best-practice population
- to obtain better forecasts of life expectancy at the national level.

Over the past 160 years, female best-practice life expectancy has been
extraordinarily linear, with a steadily increase by a quarter of a year per
year. This phenomenon was first observed by Oeppen and Vaupel (2002) who
acknowledge in their findings the “cogent evidence” that the expectation of
life can rise much further. Indeed, if life expectancy were close to a maximum,
then the increase in the record expectation of life should be slowing, and this
is not the case.

Oeppen and Vaupel suggested forecasting life expectancy in individual
countries by considering the gap in national performance in comparison to the
best-practice level. In this direction, attempts have been made by Andreev
and Vaupel (2006) who assumed a constant future value of the gap, and
by Lee (2006) who assumed that life expectancy tends to increase at some
constant rate and, additionally, each year moves of a certain proportion of the
amplitude of the gap towards the best-practice line. The first model seems to
me too simplistic and the other one not adequate to guarantee future values
of life expectancy not exceeding the best-practice line.

We will forecast life expectancy in individual countries combining the two
distinct forecasts of the best-practice line and the gap. The best-practice
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line is characterized by a striking linear trend, while the gap seems to have
exponentially decreasing trend, since, as Oeppen and Vaupel pointed out,
countries lagging behind tend to catch up with the best-practice popula-
tion. The assumption is further supported by White’s (2002) assertion that
“globalization may be occurring among rich countries, in practice affecting
mortality, as well as everything else. This could bring to converging mor-
tality patterns”. To justify such trend for the countries lagging behind the
best-practice line, it can be hypothesized that corrective actions should be
undertaken by the government if a country begins to fall too far behind. For
example in Denmark, committees have been appointed to investigate possible
means of reducing dangerous behavior (e.g. smoking and alcohol consump-
tion, both of which can be influenced by education and regulation) and the
inadequacy of health investments in the past (Bengtsson, 2006).

The time series of the best-practice level is modeled and forecast with
the classic univariate ARIMA model (Box and Jenkins, 1976). The gap is
fitted with two different models derived from the financial economics theory.
Uncertainty in the forecast is combined together via Monte Carlo simulation.

2 Data description

The analysis is conducted using data coming from the Human Mortality
Database (2008). We look at life expectancy in Italy and the US, on the
period with available data for both countries, going from 1900 until 2003.
Life expectancies at birth in Italy and the US, together with the best-practice
line and the two corresponding gaps are plotted in Figure 1.

The slower increase in life expectancies occurring in the middle of the
century, reflect the shift in the primary causes of death. Specifically, the
reduction in infant and child mortality observed before 1950 was substituted
by the reduction in old mortality starting in the late 1960s. Looking at
the relationship between life expectancy and the best-practice line we can
observe an initial convergence of the Italian female life expectancy, that set on
constant values in the last three decades. Contrary, US female life expectancy
got closer and then lagged behind the best-practice line. In 1900, female
life expectancy in the US was 49 years and was lagging roughly 10 years
behind the world record leader, New Zealand. Later on the US managed to
catch up, recording a gap of only two years in 1950 with some oscillation
until approximately 1980. Since 1980 the gains in life expectancy started to
reduce, and the gap widened. In the year 2000, US female life expectancy
was 79.7 years, again about five years lower than the record life expectancy in
Japan. The plot of male life expectancies shows a convergent trend towards
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Figure 1: Life expectancies at birth calculated using Italian and US data,
together with the best-practice line (solid black), the fitted best-practice line
(dashed black) and the two corresponding gaps.
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the best-practice line until 1950, and almost constant value onwards.

3 Methods

Using the advantage of the striking linear trend observed in the best-practice
line, and assuming the persistence of the observed past trends, we extrapolate
the stochastic process using the classic ARIMA models. The model selection
strategy developed by Box and Jenkins (1976) helps to select an adequate
model following three phases: the model identification; the model selection
and the diagnostic checking of the model adequacy. Selected the adequate
model, forecast of the future values are performed.

Thinks are a bit more complicated when we want model the gap. Consid-
ering the best-practice line as the upper bound for the country specific life
expectancy, the lower bound for the gap is equal to zero. Therefore, the gap
should be modelled in such a way that it never exceeds the value of zero. If
this condition is not met, we will obtain future values of life expectancy in
the individual countries higher than the best-practice line. Namely we ob-
tain a pattern of the best-practice line diverging from what we expected. We
decide to work with the logarithm transformation of the gaps, guaranteeing
the positiveness of future values.

We suggest here to model the stochastic future values of the gaps with two
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alternative models derived from financial economics theory: the geometric
Brownian motion and the geometric mean reversion process.

3.1 Geometric Brownian motion

The geometric Brownian motion is a continuous-time stochastic process in
which the logarithm of the randomly varying quantity follows a Brownian
motion. The model is usually used in financial economics to describe the
behavior of stock prices. It assumes that the mean and variability of stock
prices are proportional to the value of the prices itself. A stochastic process
X following a geometric Brownian motion satisfies the following stochastic
differential equation:

dX = µXdt + σXdz (1)

where z is a Wiener process, and the constant µ and σ are the percentage
drift and volatility of X. The first term on the right hand side of the equation
is the expected variation of X in the time interval dt given the drift term,
and the second term represent the variation of X in the time interval dt due
to the random component.

To obtain positive values of the variable X, we work with the logarithmic
transformation of the random variable X. Applying then Itô’s lemma to ap-
proximate the variation of the new function F = ln(X) to changes occurring
in the variable X and time t, we have:

dF =

(
µ− σ2

2

)
dt + σ dz = µ′dt + σ dz (2)

The random variable Ft is normally distributed with mean F0+
(
µ− σ2

2

)
t

and variance σ2t. Integrating both members of equation (2) we obtain:

Ft − F0 =

∫ t

0

dF = µ′
∫ t

0

ds + σ

∫ t

0

dz = µ′t + σ(zt − z0) (3)

substituting F = ln(X) we obtain the following solution:

Xt = X0 exp

{(
µ− σ2

2

)
t + σ (zt − z0)

}
(4)
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If the logarithm of a variable is normally distributed, the variable itself
is log-normally distributed. Hence Xt is log-normally distributed with the
mean and variance, obtained through the moment-generating function of a
normal distribution, equal to:

E(Xt) = X0e
µt and V ar(Xt) = X2

0e
2µt

(
eσ2t − 1

)

Future values of the stochastic variable X are obtained through simula-
tions of the paths of the stochastic variable F = ln(X), to whom is then
applied the exponential function. The values of the logarithm of X in t are
obtained using the following equation:

ln(Xt) = ln(X0) +

(
µ− σ2

2

)
t + σ

√
t ε (5)

where the ε are drawn from a standard normal distributions.

3.2 Geometric mean reversion model

The geometric mean reversion model, also called the mean-reversion Ornstein-
Uhlenbeck model (Uhlenbeck and Ornstein, 1930), is characterized by a non-
explosive behavior that tends to fluctuate around the reversion level. The
process is further characterized by a limited long-term variance. It is used
in financial economics to describe the behavior of the prices of commodi-
ties, where the demand and supply forces act when the prices are far from a
“more reasonable” equilibrium level. The formula is given by the following
stochastic process:

dX = ηX [m− log(X)] dt + σXdz (6)

where m is the long-run equilibrium level of the logarithm of X, η is the
speed of reversion, z is a Wiener process, and σ is the volatility of X. The
difference between the geometric mean-reversion process and the geometric
Brownian motion is in the drift term: the drift is positive if the current level
of X is lower than the equilibrium level m and viceversa. In other words, the
equilibrium level attracts the process in its direction and the more distant
are the prices from the equilibrium level, the higher is the tendency to revert
back to the level m.

Also here, to obtain positive values of the variable X, we work with
the logarithmic transformation of the random variable X. Applying then
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Itô’s lemma to approximate the variation of the new function F = ln(X) to
changes occurring in the variable X and time t, we have:

dF = η

[(
m− σ2

2η

)
− F

]
dt + σdz = η(m′ − F )dt + σdz (7)

Integrating the above stochastic differential equation we obtain:

Ft = F0e
−ηt + (1− e−ηt)m′ + σe−ηt

∫ t

0

eηsdz(s) (8)

The random variable Ft is normally distributed with parameters:

E(Ft) = F0e
−ηt + (1− e−ηt) m′ and V ar(Ft) = (1− e−2ηt) · σ2

2η

The mean is a weighted average between the initial level F and the long-
run level m′, and the variance increases with time, but it also converges to
σ2/(2η) as the time goes to infinity. If the logarithm of a variable Xt is
normally distributed, the variable itself Xt is log-normally distributed. More
information concerning the parameters of the log-normal distribution are
provided in Oksendal (1995).

Future values of the stochastic variable X are obtained through simula-
tions of the paths of the stochastic variable F = ln(X), to whom is then
applied the exponential function. The values of the logarithm of X in t are
obtained using the following discrete equation:

ln(Xt) = m′ (1− e−η∆t
)

+ e−η∆t ln(Xt−1) + εt (9)

where ∆t = 1, and εt is drawn from a normal distribution with mean 0
and variance σ2

ε = (1− e−2η) σ2

2η
.

4 Application

The methods described in Section 3 are applied to Italian and US data on
the period going from 1900 until 2003. Generally, to forecast mortality rates
or directly life expectancy we would consider data going from 1950 until
2003, assuming that the reduction in mortality observed in the second half
of the century at old ages, will persist in the future. Here, instead, we are
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Figure 2: Forecast best-practice line, with 80% and 95% prediction intervals.
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interested to model the existing relationship between life expectancy in a
specific country and the best-practice line. The latter, additionally did not
experience any change in the middle of the century. Looking at the data
available for the whole century we aim to model the converging behavior
between life expectancy in individual countries and the best-practice line.

4.1 Forecasting the best-practice line

Using the advantage of the striking linear trend observed in the best-practice
line, especially for females, and assuming the persistence of the observed
past trends, we extrapolate the stochastic process using the classic ARIMA
models. The model fitting the data best is an ARIMA(2,1,1) for females
and ARIMA(1,1,1) for males. The estimated future values of the record life
expectancy in the year 2050, together with the 80% and 95% prediction inter-
vals are provided in Figure 2. The colored lines represents the extrapolation
of the regression lines evaluated on the data period from 1900 to 2003.

Recalling that the future values of life expectancy at the national level can
be obtained by combining the future values of the best-practice line with the
future values of the gap in order to consider also the uncertainty associated
with the forecasts, we have to proceed through simulation. The same number
of future paths is generated both for the record life expectancy and for the
gap, and then they are combined together. Simulation of the best-practice
line are performed through the selected ARIMA models, randomly generating
the innovation εt from a normal distribution with mean zero and variance σ2

ε .
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Table 1: Estimated parameters of the geometric Brownian motion applied to
Italian and US, on the period 1900-2003, by sex.

Females Males
Italy USA Italy USA

µ -0.0107 0.0046 -0.0143 -0.0025
σ 0.1553 0.1569 0.1515 0.1274

The parameters of the models and the value of σ2
ε are the one returned from

the fitting of the ARIMA model to the data. In mathematical terms these
models are described as follows:

∇eBest
0 (t) = δ + φ2∇eBest

0 (t− 2) + φ1∇eBest
0 (t− 1) + εt + θ1εt−1

∇eBest
0 (t) = δ + φ1∇eBest

0 (t− 1) + εt + θ1εt−1

the first equation refers to females and the second to males.

4.2 Forecasting the gap with the geometric Brownian
motion

With regard to our data, the variable X presented in equation (1) represents
the gap between the country specific life expectancy and the best-practice
level. The model want to fit the behavior of the gap, that shows a slow in-
crease when a country is close to the best-practice level, and a faster increase
while is further away. The estimated parameters of the model µ and σ are
presented in Table 1.

To obtain the distribution of the future values of the national life ex-
pectancy until the year 2050, is necessary to simulate the future values of
the gap and combine them with the same number of simulated future values
of the best-practice line. Here we first simulate the future values of the log-
arithm of the gap according to equation (5) and then apply the exponential
function.

The distribution of the future values of the gaps are plotted in Figure 3
while future life expectancies are plotted in Figure 4. Satisfactory results are
produced for Italy, while the US data return very unreasonable values of the
prediction intervals. These results question the capability of the model to
reproduce the uncertainty in the gap.

8



Figure 3: Forecast of the gap until the year 2050, based on the geometric
Brownian motion for Italy and the US, with the corresponding 80% and 95%
prediction intervals. Female (left panel) and male (right panel) data.
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Figure 4: Forecast life expectancy until the yeas 2050, based on a geometric
Brownian motion for Italy and the US, with the corresponding 80% and 95%
prediction intervals.
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Life expectancy for the two countries show quite a parallel trend, with
the US maintaining its unfavorable position. Italian females are expected to
reach in 2050 a value of life expectancy equal to 96.7. The corresponding
value for males is equal to 88.4. The US are expected to have a life expectancy
of 93.5 years for females and 86.1 for males.

More information is provided by the prediction intervals of life expectancy,
although extremely wide and unreasonable values are obtained in the US
data. The 95% prediction intervals around the Italian life expectancy in
the year 2050 is 8 years wide for females and 9 years for males. As already
anticipated non meaningful values of the prediction intervals for the US were
obtained.

4.3 Forecasting the gap with the geometric mean re-
version process

The results of the previous section, obtained applying the geometric Brow-
nian motion to the gaps, did not show satisfactory results in terms of pre-
diction intervals. We apply here an alternative model characterized by a
non-explosive behavior that tends to fluctuate around the reversion level.
Let recall the geometric mean reversion process in equation (6), describing
the behavior of the gap between the country specific life expectancy and the
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Table 2: Estimated parameters of the geometric mean reversion process,
applied to Italian and US data, on the period 1900-2003, by sex.

Female Male
Italy USA Italy USA

µ′ 0.7063 1.2754 -2.3012 1.5880
η 0.0157 0.0668 0.0062 0.1081
σ 0.1559 0.1584 0.1519 0.1295

best-practice level. The estimated parameters of the model µ′, η and σ are
presented in Table 2.

To obtain the distribution of the future values of the national life ex-
pectancy until the year 2050, is necessary to simulate the future values of
the gap and combine them with the same number of simulated future values
of the best-practice line. Here we first simulate the future values of the log-
arithm of the gap according to equation (9) and then apply the exponential
function.

The distribution of the future gaps is plotted in Figure 5 while future
life expectancies are plotted in Figure 6. The estimated long-run equilibrium
level seems to be very close to the last observed value of the gap. The
future values of life expectancy at birth, plotted in Figure 6, show a slightly
converging trend of the female life expectancies, slightly diverging for male.
Italian females are expected to reach in 2050 a value of life expectancy equal
to 95.7. The corresponding value for males is equal to 88.1. The US are
expected to have a life expectancy of 93.8 years for females and 84.0 for
males.

More information is provided by the prediction intervals of life expectancy,
showing a limited variance of the process in the long-run, stable on certain
values. The 95% prediction intervals around female life expectancy in the
year 2050 is 11 years wide for both countries. Life expectancy for Italian
males has 95% prediction intervals 9 years wide. The same value for the US
is equal to 10 years.

5 Conclusions

Combining the two distinct forecasts of the best-practice line and the gap,
we obtained forecasts of life expectancy. The gap was forecast with two
different models, that produce quite similar results of the median value of
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Figure 5: Forecast gap until the year 2050, based on a geometric mean
reversion process for Italy and the US, with the corresponding 80% and 95%
prediction intervals. Female (left panel) and male (right panel) data.
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Figure 6: Forecast life expectancy based on a geometric mean reversion pro-
cess for Italy and the US, with the corresponding 80% and 95% prediction
intervals. Female and male data.
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life expectancy in the year 2050. However, the two models differ in the
estimation of the uncertainty of the forecast. The geometric Brownian motion
returned sometimes explosive and unreasonable prediction intervals. More
conservative, but more reasonable, are the prediction interval returned by
the geometric mean reversion process. On average they returned 10 years
wide prediction intervals.

Let stress here which is the strength of the models presented. It occur,
sometimes, forecasting life expectancy through age-specific death rates or
directly forecasting life expectancy, to obtain extremely high or low future
values. You can see plots of future life expectancy bending over time or, on
the contrary, increasing extremely fast. This happen especially if forecasts
are performed considering data from the beginning of the century (1900-
2004). Moreover, these results are not consistent with the acknowledged
long term trend in the best-practice line. Working within the framework of
the best-practice line we have been able to constrain future life expectancy
within reasonable values, coherently with the trend of the best-practice line.
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