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We discuss the remarkable correlation between life expectancy and life disparity 

across countries and over time. We define life disparity as ∫=
ω
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is remaining life expectancy at age a and time t, 
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l a x t dxt µ= −∫  gives the probability of survival to age a and ),( taµ  

denotes the age-specific hazard of death.  The life table distribution of deaths is given 

by ),(),(),( tataltaf µ= . Maximum lifespan is denoted by ω.   

Saving a life at any age extends life expectancy. Saving a life at an old enough 

age increases life disparity; saving a life at a young enough age decreases life 

disparity. We prove that if a threshold age between such late and early deaths exists, 

then this age is unique. The proof is as follows: 

Consider the increase in †e  due to reductions in mortality,  
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),(),( µ  is the cumulative hazard function and 
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is life expectancy lost due to death among people 

surviving to age a. The function ),( tag  measures how much †e  will be increased by 

a proportional reduction in mortality at age a and time t. Because f is always positive, 

if k is negative, then the change decreases life disparity; if k is positive, then the 

change increases life disparity. If k is negative at younger ages and positive at older 

ages, then there is some age †a  at which k equals zero. This is the age that separates 

early deaths from late deaths. We prove below that †a  exists under conditions that 

generally characterize modern human populations. Furthermore we prove that if 
†a exists then there is one and only one age, †a , at which k equals zero. 

For notational simplicity, the time subscript t can be dropped without 

confusion. Let  

(3)  ))(1)(()()( † aHaeaeak −−= ,  

so that 
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We consider three cases. 

Case 1: 0)0( <k . 



At advanced ages, as ω→a , both )(† ae  and )(ae  approach 0, but )(aH  

approaches ∞+ , and thus 0)( >ωk . The function )(ak  is continuous on ],0[ ω . 

According to the intermediate value theorem, there exists at least one point, say †a , in 

],0[ ω  such that 0)( † =ak .  

It is readily shown that there is only one †a  in ],0[ ω  such that 0)( † =ak . If 

there were more than one point at which )(ak  equals zero, then the derivative of 

)(ak at some of these points would be positive and at others negative, because the 

continuous function )(ak must go up and down to cross zero more than once. If the 

derivative of )(ak is always positive when 0)( =ak , then there is only one point at 

which )(ak crosses zero. 

The derivative of (Eq. 3)  is given by 
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When 0)( =ak  it follows from (3) that 
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Case 2: 0)0( =k . 

 In this case, .0† =a  We need to show that this is the only value of †a , i.e., the 

only age when k=0. It follows from (5) that if 0)0( =k then 

1
)(

0

=
=ada

adk
. 

Hence )(ak becomes positive as age increases from zero. If there were an age above 

zero when 0)( =ak , then the derivative of k at this age would have to be zero or 

negative. But as shown in (6), the derivative has to be positive at any age when 

0)( =ak . This contradiction implies that the value of 0† =a  is unique in the case 

when 0)0( =k . 

Case 3: 0)0( >k .  

As noted above in Case 2, if there were an age when 0)( =ak  then the 

derivative of k at this age would have to be zero or negative. But as shown in (6), the 

derivative has to be positive at any age when 0)( =ak . This contradiction implies that 

there is no age that separates early from late deaths when 0)0( >k : averting a death at 

any age would increase life disparity. Hence in this case it is convenient to set †a equal 

to zero by definition.   Q.E.D. 

We have computed the value of )0(k for all 5830 life tables since 1840 in the 

Human Mortality Database (2008), the life tables used in this article. We have also 

computed the value of )0(k for the 3404 life tables in the Human Life-Table Database 

(2008). In every case 0)0( <k . The closest approach to zero was found for females in 



1911-1921 in India: for this population 33.23)0( =e , 08.23† =e , so that 22.0)0( −=k . 

Goldman and Lord (1986), however, provide two examples of life tables for which 

)0(k is positive. Both pertain to selected populations in rural areas of China in the 

period 1929-31. One is for females (Barclay et al., 1976) and the other is for males 

(Coale and Demeny, 1983). For the Chinese women )0(e =21.00 and †e =21.73.  For 

the Chinese males, )0(e =17.43 and †e =22.17. 

The entropy of life tables (Keyfitz, 1977) is equal to † (0)e e .  In addition to 
†e , several other measures of the life disparity in a lifetable have been proposed 

(Cheung et al., 2005). These include the variance in the age at death, the standard 

deviation, the standard deviation above age 10 (Edwards and Tuljapurkar, 2005), the 

inter-quartile range (Wilmoth and Horiuchi, 1999), and the Gini coefficient 

(Shkolnikov et al., 2003). These measures are highly correlated with each other. 

According to authors’ calculation based on the period life tables available at Human 

Mortality Database, the correlation of †e with the other measures never falls below 

0.964 for females and 0.933 for males. Hence †e can be viewed as a surrogate for the 

other measures. We prefer †e because of its desirable mathematical properties and 

because it can be readily explained and interpreted.  

 

 

References 

 

Barclay, G. W., A. J. Coale, M. A. Stoto, and T. J. Trussell. 1976. “A reassessment of 

the demography of traditional rural China.” Population Index 42(4):606-35. 

 

Cheung, S., J. Robine, E. Tu, and G. Caselli. 2005. “Three Dimensions of the Survival 

Curve: Horizontalization, Verticalization, and Longevity Extension.” Demography 

42(2):243–58. 

 

Coale, J. J. and P. G. Demeny. 1983. Regional Model Life Tables and Stable 

Populations, 2nd ed. New York: Academic Press. 

 

Edwards, R. D. and S. Tuljapurkar. 2005. “Inequality in Life Spans and a New 

Perspective on Mortality Convergence Across Industrialized Countries.” Population 

and Development Review 31(4):645–74. 

 

Human Mortality Database. University of California, Berkeley (USA), and Max 

Planck Institute for Demographic Research (Germany). Available at 

www.mortality.org or www.humanmortality.de (data downloaded on January 10, 

2009). 

 

Human Life-Table Database. Max Planck Institute for Demographic Research 

(Germany), University of California, Berkeley (USA), and Institut national d'études 

démographiques (France). Available at www.lifetable.de (data downloaded on 

January 10, 2009) 

 

Keyfitz, N. 1977. Applied Mathematical Demography. 1st ed. New York: John Wiley. 

 



Goldman, N., and G. Lord. 1986. “A new look at entropy and the life table.” 

Demography 23(2): 275-82. 

 

Shkolnikov, V., E. Andreev, and A. Begun. 2003. “Gini Coefficient as a Life Table 

Function: Computation from Discrete Data, Decomposition of Differences and 

Empirical Examples.” Demographic Research 8(11):305–58. 

 

Vaupel, J. W. 1986. “How Change in Age–Specific Mortality Affects Life 

Expectancy.” Population Studies 40(1):147–57. 

 

Vaupel, J. W. and V. Canudas-Romo. 2003. “Decomposing Changes in Life 

Expectancy: A Bouquet of Formulas in Honour of Nathan Keyfitz’s 90th Birthday.” 

Demography 40(2):201– 16. 

 

Wilmoth, J. R. and S. Horiuchi. 1999. “Rectangularization Revisited: Variability of 

Age at Death with Human Populations.” Demography 36(4):475–95. 

 


