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Abstract

Survival analysis with interval-censored data has been studied ex-
tensively in the past, but almost exclusively with interval censored
survival. In this paper, we investigate the consequences of interval
censoring of status change of a time-varying dichotomous covariate.
First an imputation method based on an assumption of a parametric
hazard for the time to status change is proposed and evaluated, both
in a simulation study and with real data. Then the problem is attacked
with the aid of the EM algorithm, and some comparisons are made.

1 Introduction

In survival analysis, notably Cox regression, a common problem is: An ex-
planatory variable can take only a finite number of values, and it changes
value over time. The exact time of status change is not recorded, but only
a time interval, containing the status change. This paper is concerned with
the special case where the covariate is dichotomous, with one state absorb-
ing. Our application in this paper is from historical demography where the
covariate socio-economic status (Ses), in many data sources is of secondary
interest, and only registered when some other, primary, vital event is occur-
ring. For the timing of status shifts in Ses, thus only an interval where it
happened is known.

This problem has been considered mainly in the context of joint mod-
eling of survival and longitudinal data. Danardono (2005) gives a fairly
complete review of this literature, for instance Goggins, Finkelstein & Za-
slavsky (1999b), Goggins, Finkelstein & Zaslavsky (1999a), Wulfsohn &
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Tsiatis (1997), Henderson, Diggle & Dobson (2000), Lin, Turnbull, McCul-
loch & Slate (2002), McCulloch, Lin, Slate & Turnbull (2002), Xu & Zeger
(2001b), Xu & Zeger (2001a), Tsiatis, DeGruttola & Wulfsohn (1995), Tsi-
atis, Boucher & Kim (1995), Rabinowitz, Tsiatis & Aragon (1995), and
Pawitan & Self (1993). Bruijne, Cessie, Kluin-Nelemans & Houwelingen
(2001) suggested using time elapsed since the last measurement (TEL) as a
complement to an imputed value.

The problem may also be formulated as a three-state illness-death model,
which is a very useful, and often used, model in biostatistics. For reference,
see the paper by Andersen (1988) and the monograph by Andersen, Bor-
gan, Gill & Keiding (1993). The three-state formulation to our problem is
described in Section 2.

The undesirable properties of the traditional approach are demonstrated
in Section 3. It is done by simulating a two-sample case, where the survival
in the two samples have the same survival probabilities. Then the data
is artificially mangled trough an interval censoring mechanism, and, as ex-
pected, the estimate of sample difference becomes more and more biased, as
the lengths of the censoring intervals increase.

In Section 4 an imputation method is suggested. It is first described in
the constant hazard case (for the transition from the lower to the upper

class), then in the general case, but still within the framework of a paramet-
ric family of distributions. As an example, we show the calculations for a
Weibull family of distributions. The imputation method gives too optimistic
standard errors, and we discuss a method to correct them by simulation.

How to solve the problem with the aid of the EM algorithm is explained
in Section 5. Then, in Section 6, in a simulation study, we investigate the
possible loss in terms of bias, MSE, and coverage probabilities of confidence
intervals that the loss of information due to interval censored status changes
may result in. First, we investigate the properties of the standard method,
which is to assume that the status change occurs at the end of the inter-
val, by simulating data with known times of status change. This data set
is then filtered through an interval censoring mechanism. Then we run a
Cox regression on both data sets and compare results. This procedure is
repeated many times, and bias and coverage probabilities of 95% confidence
intervals can thus be estimated and compared for the two situations. Then
the imputation method is evaluated by simulation, and it is shown to com-
pare very favourably. However, the standard errors, given by treating the
imputed values as real ones, are too optimistic. We use the method from
Section 4 to correct for this.

Finally, we use our method on real data from the Demographic Data
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Base, Ume̊a University, Sweden. The setup is survival in the ages 20 to
50, with a time-varying covariate socio-economic status, for males in a nine-
teenth century parish in northern Sweden. See Section 7 for details. The
main part of the paper finishes with conclusions in Section 8.

All the numerical analyses were performed in the statistical environment
R (R Development Core Team 2008). In addition to using the R package
eha (Broström 2007), we wrote a new package inD with some utility func-
tions for writing this paper. It also contains some functions, maybe of
general interest, related to the Weibull distribution. They are described in
Appendix A.

2 The illness-death model

The problem may be formulated as an illness-death model, see Figure 1.
Two durations are measured, denoted by t and τ . The duration t is simply

lower upper

Dead

h02(t)

h12(t, τ)

h01(t)

Figure 1: The unidirectional illness-death model applied to social mobility
and mortality.

age, while τ is time measured from entering state upper. For individuals
starting in state upper, they are the same, i.e., t = τ .

We are interested in a comparison of h02 and h12, i.e., do individuals in
the upper class have a different mortality compared to those in the lower

class? We are assuming that h12 depends on t only, and not on τ . We are
following all individuals from a common start age, until they die (or get
censored). Some individuals start in the lower class, some in the upper.
Therefore, the problem cannot be solved directly by methods suggested by
Frydman (1995) or Joly, Commenges, Helmer & Letenneur (2002).
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3 Properties of the traditional method

The “traditional” method is to use the date when the change first was no-
ticed as the date of change. This will of course overestimate the true date
of change, while we in fact have an interval-censoring of the status change.

As an example, consider a two-sample situation where individuals are
categorised into one of two possible states, lower and upper. An individual
is allowed to move from lower to upper, but not the other way around.
We are interested in whether mortality in the two states differ. When in
reality there is no difference, we may get the results shown in Figure 2 with
varying degree of censoring interval length. See also Table 1 for different
results of Cox regressions on the same data sets. It is obvious from Table 1
and Figure 2 that too sparse surveillance together with a neglect of the need
to view data as interval-censored will ultimately lead to severely biased
analyses.

Table 1: Six Cox regressions of a simulated data set with varying degree of
interval censoring of status change. True coefficient value is zero.

censoring prop. time
ivl length in upper coef R.R. se(coef) p-value

0 0.628 -0.006 0.994 0.052 0.901
1 0.615 0.046 1.047 0.052 0.379
2 0.603 0.100 1.105 0.052 0.057
3 0.590 0.155 1.167 0.052 0.003
5 0.568 0.261 1.299 0.053 0.000
10 0.514 0.542 1.719 0.053 0.000

The reason for this phenomenon is obvious. What happens when the
status change time is censored, in the naive way of treating the problem, is
that the average time spent in the upper class decreases, while it increases
in the lower class, and the number of events (deaths) in the two classes
remain constant. Therefore, estimated mortality in the lower class will
successively be lower and lower, as the censoring gets more and more severe,
while the opposite will happen in the upper class.
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Figure 2: The effect of interval censoring of status change, the two-sample
case (simulated data). The effect is increasing with increasing average in-
terval length. Nelson-Aalen plots.

4 Imputation methods

The simplest possible method of imputation given that a status change oc-
curred in a certain time interval is to take the midpoint of the interval. Here,
two different approaches are taken. First, we assume that there is a constant
intensity ru of a transition from the lower to the upper class. Second, we
assume a general parametric family of distributions. In both cases, parame-
ters are estimated by maximum likelihood from data. Then expected values
are imputed.

5



4.1 Exponential imputation

There are two types of intervals, either there is no transition in the interval,
or there is one. In the first case, the contribution to the likelihood function
is

L0(ru; ℓi) = P (T > ℓi | ru) = exp(−ruℓi), i ∈ S0,

and in the second case

L1(ru; ℓj) = P (T ≤ ℓj | ru) = 1 − exp(−ruℓj), j ∈ S1,

where ℓi is the length of the ith interval, S0 and S1 are the sets of intervals
with no or one event, respectively. The full likelihood function thus becomes

L(ru; ℓ) =

{

∏

i∈S0

exp(−ruℓi)

}

∏

j∈S1

(

1 − exp(−ruℓj)
)

, (1)

from which we get, by numerical maximisation, the ML estimate r̂u. Now,
the imputed values for the intervals with one event is given by the conditional
expectation

t̂j =

∫ ℓj

0 xr̂u exp(−xr̂u)dx

1 − exp(−r̂uℓj)

=
1

r̂u
−

ℓj exp(−ℓj r̂u)

1 − exp(−ℓj r̂u)
, j ∈ S1.

(2)

4.2 General distribution imputation

We now introduce a general distribution for the time to status change. Since
we no longer can utilise the exponential distribution property of lack of
memory, we need to introduce the start age ti of an interval together with
its length ℓi, i = 1, . . . , n. Thus the contributions to the likelihood become

L0

(

θ; (ti, ℓi)
)

= Pθ(T > ti + ℓi | Ti ≥ ti) =
S(ti + ℓi;θ)

S(ti;θ)

in the no-transition case, and

L1(θ; (ti, ℓi)) = Pθ(T ≤ ti + ℓi | Ti ≥ ti) = 1 −
S(ti + ℓi;θ)

S(ti;θ)

in the one-transition case. In analogy with (1), we get

L{θ; (t, ℓ)} =

{

∏

i∈S0

S(ti + ℓi;θ)

S(ti;θ)

}

∏

j∈S1

{

1 −
S(tj + ℓj;θ)

S(tj;θ)

}

(3)
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In the Weibull case, we have θ = (p, λ), and

S(t; (p, λ)) = exp

{

−

(

t

λ

)p}

, t > 0, (4)

and an application of the imputing method with the Weibull distribution
requires first order partial derivatives of the Weibull survivor function S,
corresponding to the hazard function given by (17). It is convenient to
reparametrise according to

γ = log(p),

α = log(λ),

or

p = eγ ,

λ = eα,
(5)

which leads to the following expressions for the log survivor function and its
first order partial derivatives, for t > 0:

log S(t; (eγ , eα)) = −

(

t

exp(α)

)exp(γ)

,

∂

∂γ
log S(t; (eγ , eα)) = p log

(

t

λ

)

log S(t; (p, λ)),

∂

∂α
log S(t; (eγ , eα)) = −λ log S(t; (p, λ)).

(6)

Now, the relations

∂

∂θ
S(t; (p, λ)) = S(t; (p, λ))

∂

∂θ
log S(t; (p, λ)), θ = γ, α

together with (6) are all we need in order to estimate the parameters in the
Weibull model (3) with a quasi-newton method.

4.3 Variance estimation

The imputation method may give too small variance estimates, because a
variance component is removed by imputing an expected value instead of
the corresponding random variable. One way to correct for that is to impute
a random draw from the estimated conditional distribution of the time to
transition, i.e., to draw random numbers from truncated versions of the
estimated distribution. If this procedure is repeated n times, the result is
n estimates of the regression coefficient, and the sample variance of these is
added to the variance given by Cox regression procedure.
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5 The EM algorithm

5.1 The likelihood function

Given data (si, Ti, ui, ci, di, xi, zi), i = 1, . . . , n, where si is a left truncation
time point, ui is a failure or right censoring time point, ci is a status change
indicator, di is an event indicator, xi is the status indicator, Ti is the po-
tential (ci = 1) time point for status change in (si, ui), and zi is a vector of
covariates.

Suppose that Ti, i : ci = 1 is fully observed. Then the full likelihood
function is

L(α,β,γ,φ) =
n

∏

i=1

{

(

hγ(ui)e
xiα+ziβ

)di

(

Sγ(ui)

Sγ(si)

)exiα+ziβ

×

(

Sγ(ui)

Sγ(Ti)

)cie
α

Rφ(si, ui, Ti, ci)

}

(7)

where hγ is the hazard function of the survival distribution of survival and
gφ is the density of time to status change. The function Rφ is the contri-
bution to the likelihood function from interval i regarding the process of
status change. Note that each individual possibly is represented by several
intervals. Either ci = 1 for exactly one of the individual’s intervals, in which
case we have an interval-censored observation, or ci = 0 for all intervals,
in which case the status change either never happens or happens after the
time of last seen, which will constitute a right censored observation of status
change.

The full log likelihood function is, with θ = (α,β,γ,φ),

ℓ(θ) =
∑

i:di=1

(

xiα + ziβ + log hγ(ui)
)

−

n
∑

i=1

exiα+ziβ
(

Hγ(ui) − Hγ(si)
)

−
∑

i:ci=1

eα
(

Hγ(ui) − Hγ(Ti)
)

+

n
∑

i=1

log Rφ(si, ui, Ti, ci)

(8)

Here Hφ(x) = − log Sφ(x), x > 0 is the cumulative hazard function of sur-
vival.
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5.2 Implementing the EM algorithm

The EM algorithm consists of two steps. In the first, the E step, the condi-
tional expected value of (8) with respect to available information and given
parameter vector θ = θ(j) is calculated. Then, in the M step, the calculated
expectation is maximized with respect to θ. However, from (8) it is obvious
that the updating of φ will run unaffected by the updating of the rest of the
parameters. Therefore, it is possible to proceed in two stages. In the first
stage, φ is estimated, and in the second stage, the EM algorithm is run on

ℓr(θ) =
∑

i:di=1

(

xiα + ziβ + log hγ(ui)
)

−

n
∑

i=1

exiα+ziβ
(

Hγ(ui) − Hγ(si)
)

−
∑

i:ci=1

eα
(

Hγ(ui) − Hγ(Ti)
)

(9)

To begin with, we assume that the fist phase is carried out, giving φ = φ̂.

5.2.1 The E step

The last sum in (9) contains the unobservables, Ti, i : di = 1. For each such
record, we have to calculate the expectation

E
θ(j)

{

eα
(

Hγ(ui) − Hγ(Ti)
)

| si < Ti < ui

}

= eα
{

Hγ(ui) − E
θ(j)

(

Hγ(Ti) | si < Ti < ui

)}

= eα
{

Hγ(ui) − E
φ̂

(

Hγ(Ti) | si < Ti < ui

)}

(10)

5.2.2 The M step

In iteration (j + 1) the M step consists of maximizing

E
θ(j)

(

ℓ(θ)
)

=
∑

i:di=1

(

xiα + ziβ + log hγ(ui)
)

−

n
∑

i=1

exiα+ziβ
(

Hγ(ui) − Hγ(si)
)

−
∑

i:ci=1

eα
{

Hγ(ui) − E
φ̂

(

Hγ(Ti) | si < Ti < ui

)}

(11)
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with respect to θ, which gives θ(j+1). From this it is obvious that the EM
algorithm converges in one step. The remaining problem is to calculate the
conditional expectation in the last sum in (11). One option is to do it by
numerical integration.

In order to be able to use an efficient Newton procedure we need the
score vector of (11).

∂

∂α
E

θ(j)

(

ℓ(θ)
)

=
∑

i:di=1

xi

−
n

∑

i=1

xie
xiα+ziβ

(

Hγ(ui) − Hγ(si)
)

−
∑

i:ci=1

eα
{

Hγ(ui) − E
φ̂

(

Hγ(Ti) | si < Ti < ui

)}

,

(12)

∂

∂βj
E

θ(j)

(

ℓ(θ)
)

=
∑

i:di=1

zij

−

n
∑

i=1

zije
xiα+ziβ

(

Hγ(ui) − Hγ(si)
)

, j = 1, . . . , p,

(13)

∂

∂γ
E

θ(j)

(

ℓ(θ)
)

=
∑

i:di=1

∂
∂γ

hγ(ui)

hγ(ui)

−

n
∑

i=1

exiα+ziβ
∂

∂γ

(

Hγ(ui) − Hγ(si)
)

−
∑

i:ci=1

eα ∂

∂γ

{

Hγ(ui) − E
φ̂

(

Hγ(Ti) | si < Ti < ui

)}

(14)

As an example, and the application in this paper, let the survival distri-
bution be Weibull. Then, for t > 0,

Hγ(t) =

(

t

eγ2

)eγ1

hγ(t) = eγ1−γ2

(

t

eγ2

)eγ1−1

,

(15)
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and the partial derivatives are, for t > 0

∂

∂γ1
Hγ(t) = Hγ(t) log Hγ(t)

∂

∂γ2
Hγ(t) = −eγ1Hγ(t)

∂

∂γ1
hγ(t) = hγ(t) +

eγ1

t
Hγ(t) log Hγ(t)

∂

∂γ2
hγ(t) = −eγ1hγ(t)

(16)

6 A simulation study

6.1 Layout

In order to quantify the bias, we perform a simulation study in the two-
sample situation, where individuals are allowed to move from sample lower

to sample upper, but not the other way around. The layout of the simulation
study is as follows.

The initial conditions are:

1. We want to study the effect of Ses a dichotomous covariate, on mor-
tality in a certain age interval (a, b], common to all individuals.

2. We assume that Ses takes the two values lower and upper, and that

(a) at most one transition occurs for each individual,

(b) only upward transitions are allowed,

(c) the intensity of dying changes by a factor γ = exp(β) at the age
of a transition, and

(d) With probability p, each individual is born in the upper class,
independently of all the other individuals.

3. Each individual is “peeked at” at regular time points in calendar time
with constant period. It is only at these “peeking” ages that Ses is
directly observed. All individual are “peeked at” at death, i.e. the
true value of Ses is known at the death age.

4. Birth dates follow a Poisson process with constant intensity between
given dates. This assumption is not important, but present to ensure
a random distribution of peeking ages over individuals.

11



There are two important objectives in the simulation layout: The sim-
ulation of exact data, including ages of change in Ses and the creation of
“peeked” data, from exact data.

Survival times are drawn from the Weibull proportional hazards model

h(t;λ, p,β) =
p

λ

(

t

λ

)p−1

exp(βx(t)), 20 < t ≤ 50, (17)

where x(t) is an indicator function:

x(t) =

{

0 if in lower Ses at t

1 if in upper Ses at t
, 20 < t ≤ 50.

We assume, without loss of generality, that throughout all simulations we
have

p = 2

λ = 50

pu = 0.2

ru = 0.02

where pu is the probability of starting in upper at age 20, and ru is the inten-
sity of moving from lower to upper. The regression parameter β is taking
the values 0,±0.5,±1 in the simulations. The periods at which peeking is
done is taken as 5, 10, 20. Studied sample sizes are n = 50, 100.

6.2 Results

First, we investigate the effect of increasing severity of the interval censoring,
i.e., the effect of different lengths of time between consecutive observations.

As can be seen in Figure 3, with sparse surveillance comes bias in pa-
rameter estimates and too low coverage probabilities for confidence intervals
calculated by standard asymptotic methods. This is of course exactly as ex-
pected.

For comparing the imputation method to the exact and naive methods,
the simulation is carried out in exactly the same way as in the previous case.
The situation with peeking every tenth year is considered, and the three
situations with continuous, peeked, and imputed information is compared.
As can be seen in Figure 4, the imputation performs very well, almost as
well as if full information was available.
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Figure 3: Bias (left panels) and coverage (right panels), nominal confidence
is 95%) for sample sizes 50 and 100. Continuous surveillance (solid lines),
every fifth year (dashed), every tenth year (dotted), and every twentieth
year (dashed-dotted).

7 Real data: Socio-Economic Status

A data set from the Demographic Data Base, Ume̊a University, contains
survival data from the Skellefte̊a region in northern Sweden for the years
1840–1870. The time-varying dichotomous covariate Ses (Socio-Economic
Status) is of special interest as a factor determining mortality in the ages
20–50.

7.1 Weibull regression with peeked data

Results in

Covariate Coef Exp(Coef) se(Coef) Wald p

ses, upper -0.146 0.864 0.145 0.313
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Figure 4: Bias (left panels) and coverage (right panels), nominal confidence
is 95%) for sample sizes 50 and 100. Continuous surveillance (solid), every
tenth year (dashed), and imputed (dotted).

log(scale) 4.561 95.723 0.098 0.000

log(shape) 0.251 1.285 0.063 0.000

Events 255

Total time at risk 35783

Max. log. likelihood -1508.1

7.2 Weibull regression with imputed data

Imputation was performed by assuming a Weibull distribution for time to
promotion, with the result that the parameter φ was estimated by φ̂ =
(0.3435, 2.7334). The result from the survival analysis:

Covariate Coef Exp(Coef) se(Coef) Wald p

ses -0.788 0.455 0.135 0.000
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log(scale) 4.383 80.118 0.080 0.000

log(shape) 0.334 1.396 0.058 0.000

Events 255

Total time at risk 35978

Max. log. likelihood -1493.3

7.3 Weibull regression with the EM algorithm

Results:

Covariate Coef Exp(Coef) se(Coef) Wald p

ses -0.402 0.728 0.136 0.0007

log(scale) 4.483 88.500 0.098 0.0000

log(shape) 0.292 1.339 0.061 0.0000

Events 255

Total time at risk 35978

Max. log. likelihood -1524.6

The analysis was performed in both the traditional way and using two meth-
ods of correction, imputation and the EM algorithm. Only upward changes
were considered. From Figure 5 it is obvious that the effect of not correcting
for interval censoring may be dramatic.

8 Conclusion

The imputation method performs very well in our simulation example. One
reason to be careful with conclusions, though, is that the distributional
assumption under which the imputations were estimated is exactly the same
as was used in the simulation.

From the real data example, it is obvious that different methods, like
the EM algorithm and the imputation methods, can give rather different
results. More research is needed in order to shed light on this issue.
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Figure 5: Cumulative hazards functions for raw and imputed data and for
lower and upper social class.
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A An R package for simulation and analysis of

interval censored status change

As a preparation for writing this paper, an R package for simulation and
analysis of interval censored status change was written. We call it inD,
and the current (February 2008) version is 0.8. It contains the following
functions.

pcweibull Calculates a conditional Weibull cumulative distribution func-
tion, given survival up to a certain age.

pjweibull The cdf for a jump Weibull distribution with constant shape
parameter, but with a jump in the scale parameter at a certain age.

rcweibull Generates random numbers from a conditional Weibull distribu-
tion, see pcweibull.

rjweibull Generates random numbers from a jump Weibull distribution,
see pjweibull.

simData Simulates survival data with a time-dependent covariate.

peekData From a data frame with exact date for status change, this func-
tion creates a data frame with interval censored status change.

impute For a data frame with interval censored status change, it imputes
an exact value for the status change and outputs a data frame accord-
ingly.
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