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Abstract
We propose a simple model that allows us to consider satellite data on lights at night as a 

proxy for local economic activity, distinguishing between population density and consumption 
per person. The model is tested on a 12-year panel of countries, as well as a panel of subnational 
administrative units in Guatemala. To our knowledge this is the first global analysis using panel 
night lights data (1992-2003). We find that changes in lights explain a large portion of the 
variation in changes in consumption. We then apply the lights data to a developing country 
debate about whether growth in local agricultural activity in a city’s hinterland itself spurs city 
growth, as opposed either to being irrelevant or to there being a one way street where local 
agriculture growth is dependent on city growth. We find for African cities that exogenous 
productivity shocks in agriculture as represented by years of high rainfall have a significant and 
substantial effect on the level of local urban economic activity.. 

0.   Introduction

 Economists studying macroeconomics and growth generally focus on Gross Domestic 

Product (GDP) as the dependent variable in their analyses.  The conceptual problems in defining 

GDP, much less using it as a measure of welfare, are the stuff of introductory economics courses.  

Just as serious, however, is the problem that GDP is terribly measured.  For example, in the 

United States, the standard deviation of the gap between the advance estimate of real quarterly 

GDP growth (which is available one month after the end of the quarter) and the latest revised 

estimate (recalculated every July for three years, and every five years thereafter) is 1.0% for 

1983-2002.  This is a substantial portion of the standard deviation of measured growth, 2.4% 

over the same period (BEA 2006, 2008). 

 The measurement problems in GDP are far more serious in developing countries, for 

several reasons.  Compared to developed countries, a much smaller fraction of economic activity 

in developing countries is conducted within the formal sector, the degree of economic integration 

among regions is low, and the government statistical infrastructure is often quite weak.

Comparing real GDP among countries requires not only the compilation of nominal GDP (total 

* We thank Chris Elvidge for advice and auxiliary data, Andrew Foster and participants at the 2008 
BREAD/CEPR/Verona Summer School on Development Economics  for comments, and Joshua Wilde for research 
assistance.
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value added, in domestic prices), but also information on prices that can be used to construct 

purchasing power parity (PPP) exchange rates. The difficulty of measuring GDP in developing 

countries was illustrated in 2005 when the World Bank carried out new surveys of prices in a 

large number of countries (the previous round had been in 1993, although many countries had 

not participated).  The values of PPP GDP in both China and India were reduced by 

approximately 40% in the new calculation.  In the Penn World Tables (PWT), for one of the 

standard compilations of cross-country data on income, countries are given grades corresponding 

to data quality, with a grade of A indicating a margin of error of 10%, B indicating 20%, C 

indicating 30%, and D indicating 40%.   Almost all industrial countries receive a grade of A.  By 

contrast, for the 43 countries sub-Saharan Africa (Madagascar and the mainland countries that 

don’t touch the Mediterranean), 17 get a D and 26 a C.  Measurement error in GDP data can 

easily lead researchers to erroneous conclusions.  For example, Dawson et al. (2001) claim that 

the empirical link between output volatility and income growth in the PWT data is purely a 

product of measurement error in annual income.  Some countries simply have no national 

accounts data available at all.  For example, Iraq, Myanmar, Somalia, and Liberia are among the 

countries not included in the most recent version of the Penn World Tables.  Finally, reliable data 

on output at the sub national level are regularly available for very few countries, and most of 

those are highly developed.

 In response to the problems of measuring GDP, there is a long tradition in economics of 

looking to various proxies that are more precisely measured, cover periods or regions for which 

GDP data are not available, or are available more quickly than standard GDP data.  For example, 

up until the year 2005, the Federal Reserve Board based its monthly index of industrial 

production in part on a survey of utilities which measured electricity delivered to different 

classes of industrial customers.  Similarly, an IMF study examining electricity consumption in 

Jamaica over the decade of the 1990s concluded that officially measured GDP growth, which 

averaged 0.3% per year, understated true output growth by 2.7% per year, the gap being 

explained by growth of the informal sector (IMF, 2006). Economic historians have also 

employed a variety of proxies for studying economic outcomes in the period before the creation 

of national income accounts and in order to examine growth in sub-national units.  For example, 

Good (1994) estimates output in 22 sub regions of the Habsburg Empire in the period 1870-1910 

using proxies such as the number of letters mailed per capita.   The essays in Steckel and Rose 
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(2002) use skeletal remains to measure both the average standard of living and the degree in 

inequality in the Americas over the last two millennia.     

In this paper we explore the usefulness of a new proxy for economic activity: the amount 

of light that can be observed from outer space.  More particularly, our focus will be on using 

changes in “night lights” as a measure of growth.   

 One reason for looking at data on change in night light intensity is simply as an additional 

measure of output growth.  Even if changes in light from space are also subject to significant 

measurement error, it is well known that several error-prone measures are better than one, 

especially if there is no reason to think that the measurement errors are correlated. The night 

lights data have several advantages, however. The data from satellites are available at a much 

higher time frequency than standard output measures.  Although measurement considerations 

would make it unreasonable to look at frequencies as short as days or weeks, the satellite data 

allow for measurements of seasonal patterns of activity that would be unobtainable in most 

countries.

Most significantly, the data are available at a far greater degree of geographic fineness 

than is attainable in any standard income and product accounts.  As discussed later, we can map 

data on light observed from space down to a unit smaller than a one-kilometer square, which can 

be matched with map data to aggregate to the town, city, or regional level.  This makes the data 

uniquely suited to spatial analyses of economic activity. Economic analysis of growth and the 

impacts of policies and events on cities and regions of many countries is hindered by a complete 

absence of any regular measure of the level of local economic activity. While population data are 

typically regularly available for cities above a certain size, almost no countries have city level 

GDP1 data. Night lights data give us such a measure and we will analyze applications and 

methodology in the paper. Besides looking at total economic activity, by decomposing economic 

activity into population density and per capita consumption components, we can potentially back 

out the rate of per person consumption growth and the impact of policies on living standards at 

the sub-national level.  

To illustrate an application of lights data to an economic problem, we turn to the debate 

about the extent to which productivity in the agricultural hinterland of a city affects city 

economic growth. Urban economists tend to model cities as either divorced from their hinterland 

1 For an exception, see Au and Henderson (2006) on China. 
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(e.g., Black and Henderson, 1999) or as source of demand for local agricultural crops (von 

Thunen, 1826 and Nerlove and Sadka, 1987). Traditional development economics views the 

rural sector as simply a source of surplus labor (dual sector models following Lewis 1954 and 

Harris-Todaro 1970). The new economic geography allows agriculture to be a source of demand 

for urban products, but the interaction plays a limited role in analysis (Krugman, 1991, with 

some empirical application in de Mata et al., 2007). Only a handful of agricultural growth 

economists (e.g, Irz and Roe, 2005 and Tiffin and Irz, 2006) seem to seriously consider that 

productivity gains in local agriculture play a strong role in city growth. The idea that agriculture 

can spur urban growth is hard to test because of lack of detailed sub-national data on both city 

incomes and incomes in the agricultural hinterland of cities, as well as a context to make 

inferences about which way causality runs. Whose growth spurs whom? In this paper, we make 

use of a “natural” experiment using night lights data on 541 African cities to examine the extent 

to which productivity gains in local agriculture engendered by rainfall increases affect city 

economic activity.  

The rest of this paper is organized as follows. Section 1 gives a brief introduction to the 

night lights data and discusses more obvious examples of how they represent differences in 

income levels across countries and the effects of shocks on growth or income levels. In section 2 

we estimate baseline models where, first, lights are a measure of national GDP and then where 

national GDP is decomposed into per person GDP and population density components. Later in 

Section 2 we turn to estimating models at the sub-national administrative level, to see how local 

per person consumption growth could be estimated from a combination of night lights and local 

population data. Finally in section 3 we turn to an application for a large sample of African cities, 

where we estimate the impact of agricultural productivity shocks on urban growth.

1.   Night lights data

A US Air Force weather satellite circles the globe 14 times per day as the earth rotates, 

recording the intensity of earth-based lights.  The satellite records on a swath wide enough so 

that it covers virtually the entire earth between about 8:30 and 10pm (depending on location), 

when it is night time but people are typically still active, at least once every 24 hour time period. 

Using night lights during the dark half of the lunar cycle in seasons when the sun sets early 

removes intense sources of natural light, leaving mostly man-made light. The number of valid 
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nights of data per year for an area varies by location and year depending on evenings of cloud 

cover, and seasons in high-latitude vs. equatorial places.  Readings affected by auroral activity 

(the northern and southern lights) and forest fires are also removed, manually and using 

frequency filters. Our measure of intensity of lights is a six-bit (0-63) digital number calculated 

for every 30-second output pixel (approximately 0.86 square kilometers at the equator)2 , which 

is averaged across overlapping raw input pixels and all valid evenings in a year. The values are 

not a direct measure of physical luminance, because sensor settings vary over time.  However, 

they can be relatively calibrated over time to get a reasonable approximation of trends in 

luminance, in part because of several years in which multiple sensors on different satellites were 

collecting the same information.  The recalibrated data, which we use throughout the paper, is on 

a scale of 0-65.

We believe intensity of night lights is a reflection of intensity of consumption, as 

reflected in the per person indoor and outdoor use of lights. Consumption of all goods in the 

evening requires lights. As income rises, so does light usage per person. Obviously there are 

issues about what types of public lighting versus private lighting go into the intensity measure. 

Lights are just a proxy for consumption, but we argue that, if no income data are available, we 

can back out a reasonable estimate of income using lights data. The advantage of lights data as 

noted above is that they are readily available. 

Table 1 gives some sense of the data, describing the distribution of digital numbers across 

pixels for ten countries covering a broad range of income and population density. One measure 

of interest is the fraction of pixels for which no light at all is registered.  In the United States, 

67.7% of pixels are unlit.  In Canada that percent is 90, while in the Netherlands it is under 1.

The percentage of unlit pixels unlit falls with income holding density constant; Bangladesh, with 

higher population density than the Netherlands, has 68% of pixels unlit.  Among poor, sparsely 

populated countries like Mozambique, over 99% of pixels are unlit.   

 Among the countries in Table 1 (and more generally in the sample) there are remarkably 

few pixels with digital numbers of 1 or 2. Among middle and lower income countries, the most 

commonly observed range for the digital number is from 3-5; for the US and Canada, it is 6-10; 

and for the Netherlands, it is 21-62.  The low fraction of pixels with digital numbers of 1 or 2 

2 Data for lights (and rainfall) are reported on a latitude-longitude grid.  Because of the curvature of the Earth, grid 
cell size varies in proportion to the cosine of latitude.  Thus all grid cell sizes are reported at the equator; sizes at 
other latitudes can be calculated accordingly.  All densities are calculated taking this into account. 
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reflects, we think, the effect of software designed to filter out noise in the sensor.  This censoring 

of data will be one of the issues we discuss further in the analysis below.   

 Related, the last two rows of Table 1 show the mean digital number, the within country 

standard deviation of the digital number across pixels and the within country Gini for the digital 

number. The mean ranges from 22 in the Netherlands to 0.03 in Madagascar. In the Table and in 

the data more generally, both the standard deviation and the Gini rise with income, the latter 

directly reflecting some divergence in spatial equality of lights with economic growth. Below in 

the empirical work we will explore the extent to which these dispersion measures additionally 

contribute to our ability to predict income growth using changes in mean digital lights.  

1.1   Simple examples of what night lights data reflect. 

A global view  

A quick look at the world in Figure 1 suggests that lights reflect human economic activity 

as pointed out in Croft (1978), Elvidge et al. (1997), Sutton and Costanza (2002), Ebener et al 

(2005), Doll et al. (2006) and Sutton et al (2007), among others.3  In the figure unlit areas are 

black, and lights appear with intensity increasing from gray to white. Lights in an area reflect 

total intensity of consumption in an area, which is increasing in both consumption per person and 

number of people. In the United States, where living standards are fairly uniform nationally, the 

higher concentration of lights in ocean and inland coastal areas reflects the higher population 

densities along those coasts. The comparison of lights in Western Europe and India reflects huge 

differences in per capita income, as does the comparison between sub-Saharan Africa and the 

low density inhabited parts of Canada. We focus first on using changes in observed lights as a 

measure of total local economic growth, and then later on decomposing that growth into 

population and per capita income components. 

Eastern Europe and the former Soviet Republics over time 

To see mostly pure income effects, we examine the differential effects of transition on 

income and lights in the former Soviet republics. We compare the former Soviet Republics of 

Moldova and Ukraine, where per capita PPP-adjusted (WDI) income fell by over 30% from 1992 

to 2002, with their Eastern European counterparts of Hungary, Poland and Romania, who went 

3 Indeed, several of these authors estimated the cross-sectional lights-GDP relationship for countries and subnational 
units of developed regions.  However, to our knowledge only Ebener et al (2005) and Sutton et al (2007) have 
considered subnational units of developing countries, both with very small numbers of units per country. Sutton et al
(2007) is the only paper with quantitative analysis of data for multiple (two) years, but they do not produce panel 
estimates. 
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through a much smoother transition process with incomes rising by 23 – 56 % in the same time 

period.

Unfortunately our satellite data only start two years into transition; nevertheless the 

differences in lights are dramatic (Elvidge et al 2005). In Figure 2 the more brightly lit areas in 

2002 are the Eastern European countries, where light intensity increases dramatically from 1992 

to 2002. The dimming of lights over the same 10 years for their neighbors who were formerly 

part of the Soviet Union is distinct. In Moldova and Ukraine, corresponding to the 30 and 35% 

drops in income per capita, along with modest population drops (3 and 8% respectively), light 

intensity drops by 68 and 47% respectively. In Hungary, Poland and Romania where incomes 

rose by 41, 56, and 23 %, the respective rises in lights were 46, 80, and 112%:

Gemstones in Madagascar

In late 1998, large deposits of rubies and sapphires were accidentally discovered in 

southern Madagascar, near the towns of Ilakaka and Sakaraha.  The region is now thought to 

contain the world’s largest sapphire deposit, accounting for around 50% of world supply; and 

Ilakaka and Sakaraha have become trading centers for sapphires. Previously little more than a 

truck stop, the population of Ilakaka is now estimated at roughly 20,000 (Hamilton 2003, Hogg 

2007).  The story of these developments can clearly be seen in the night lights data in Figure 3.  

In 1998 (and all but one of the previous six years) there were no lights visible in either Ilakaka or 

Sakaraha. Over the next five years there is a sharp growth in the number of pixels for which light 

is visible at all, and in the intensity of light per pixel.  The other towns visible in the figure, 

Tuléar and Ihosy, show no such growth. If anything, Ihosy’s light gets smaller and weaker, as it 

suffers in the competition across cities for population. 

2. Lights as a measure of economic activity 

In this section, first we analyze lights as a measure of local economic activity and then analyze 

the decomposition of economic activity into consumption per person and population at the 

national and sub-national level.

2.1 Lights and total economic activity 

We start with a simple specification of the relationship between lights and consumption, 

which we then test and refine, depending on circumstances.  We hypothesize that  
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  light / area = � (consumption/area), ' 0� � .  (1)

Lights in an area are an increasing function of total consumption in the area. The latter is 

increasing in both the number of people and their per capita consumption, which effects we will 

later allow to differ. A priori, it is not clear what the curvature of the ( )� � function should be.

There could be some diminution in the rate of increase of light as the number of people in an 

area increases. First, higher population density implies a greater likelihood of people living 

above one another, so that some light is blocked from reaching space.  Second, there could be 

economies of scale in the use of lights, such as street lamps. On the other hand, since there are 

strong economies of scale in electricity distribution. Dense areas are more likely, holding income 

constant, to have electricity which is key determinant of night lights; and, once there is electricity, 

household amperage could increase as costs fall. Of course the shape of relationship will be 

affected by the nature of the sensors used. For example, when lights are too faint the sensor 

registers no light at all; and the general relationship between “true luminance” and recorded 

digital numbers may be non-proportional. Finally, data used in estimation involves aggregating 

over pixels as noted earlier, with different distributions of light intensity across pixels for the 

same mean light in an area. We are agnostic about the shape of ( )� � and the use of specific 

controls for dispersion of lights across pixels within the same area.   

 If, as a local approximation, we restrict ( )� �  to be a power function, then light / area = 

�� (consumption/area) �� . Taking logs and re-arranging,

  ln(consumption / area) = 1/ ( / )lights area� �� � .  (1)

 We begin by using this specification to analyze data from a panel of countries.  In 

practice, we use data on GDP, rather than consumption, since the two are highly correlated (and 

it is not clear that the non-consumption parts of GDP should produce observable light in a 

fashion different than consumption). We also allow for a full set of country and time fixed 

effects.  Country fixed effects will allow for differences in climate and other local factors that 

may affect the relationship between consumption and observable light.   They also allow for non-

uniformity of consumption measures across countries (i.e. the inability of World Bank income 



9

measures to account properly for differences in purchasing power parity).  Finally, use of country 

fixed effects also can account for the fact that, in the lights data, different countries have 

different land masses which involves averaging lights across sub-national areas with very 

different population densities and extent of uninhabited sections of the country (Japan versus 

Canada). As long as such variations don’t impact the � coefficient, fixed effects are appropriate. 

A basic question is the extent to which fixed effects adequately control for differences in 

dispersion patterns of lights across countries, in using lights to predict consumption. Time fixed 

effects help control for any regime changes in the way purchasing power incomes are measured 

worldwide, and again help control for issues in light calibration across different aging satellites 

in different years, as well as sweeping out worldwide income growth effects. Identification is 

from within-country relative variation in lights and income over time.  

The specification is thus 

  ln(GDP)it = �i + �t + � ln(lights / area)it + �it,       (1a) 

where i indexes country, t indexes year, and 1/� �� � . Our measure of GDP is PPP total national 

income is taken from the World Development Indicators (WDI) online. The lights data are 

collected by US Air Force weather satellites, and processed and distributed by the National 

Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center. In years 

with data for two satellites, simple averages across satellites are calculated for each pixel. 

Basic Results 

Table 2 presents some basic results for a (modestly unbalanced) panel of 166 countries 

over 12 years, where we drop Equatorial Guinea as an outlier (see below). Column 1 is the 

specification in (1) without country fixed effects, while column 2 adds in country fixed effects. 

Column 2 suggests a smaller elasticity to the lights- consumption relationship than the simple 

pooled specification. In terms of explanatory power, the pooled 2R  in column 1 is .13; the within 
2R in column 2 is very high at .69; and the total 2R treating country dummies as nuisance 

parameters is over .99.  Column 3 suggests a quadratic specification is not appropriate. Figure 4, 

looking non-parametrically at the ln( / )lights area - ln GDP  relationship (after factoring out time 

and country fixed effects) suggests a log-linear specification does well. 
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In column 4 we look at robustness of the relationship to long differences, averaging the 

first and last 2 years of data. The elasticity is noticeably higher; but we note that any difference 

between fixed effect and long difference specifications goes away once we decompose GDP into 

population and per person consumption components in the next section. Figure 5 plots the long 

difference data points for 167 countries adding back in Equatorial Guinea. The figure shows why 

the linear approximation in Table 2 does so well; it also illustrates why we dropped Equatorial 

Guinea4.

Column 5 estimates the relationship for Africa, a continent of particular interest given 

poor GDP measures over time. In the last section we also focus on African cities, so having a 

baseline lights-GDP relationship to refer back to will be useful. The lights-GDP elasticity and the 

within 2R  are both higher for Africa alone. If we estimate the elasticity for low and lower-

middle income countries (as defined by the World Bank for the base year 1992) we also see a 

rise in the elasticity from .23 in Table 2 to .27, while for upper-middle and upper income 

countries it is only .088. This is an issue we explore more in the next sub-section. 

 The estimated parameter � (0.23 in column 2) implies that consumption is an increasing, 

concave function of observed lights and thus that observed lights are a convex function of 

consumption, where the elasticity of light with respect to economic output is between 4 and 5. 

This could simply reflect a functional relationship in the sensors between “true” and observed 

lights. But suppose that relationship is proportional (ignoring the local convexity induced by 

censoring of low light levels by the recording sensors), a priori, there is no reason that the true 

relationship between output and light could not be convex. Consumption of light may be a luxury 

good. And as mentioned above, there are large fixed costs to the installation of electricity, so that 

only areas of sufficient population and income have access to electricity (approximately 75 

percent of the world’s population is estimated to have access to electricity (IEA 2006)).   

Dispersion of lights within a country 

 This property of the ( )� � function has implications in aggregation. In the regressions, the 

measure of light that we use is the digital number per pixel, averaged over all pixels in a country.

As mentioned above, for most poor countries, the vast majority of pixels have a value of zero. 

This suggests the country average will be determined not only by the average level of economic 

                                                
4 Equatorial Guinea is dropped as an extreme outlier of high consumption for low lights, particularly in long 
differencing, given oil discoveries over the 12 years.
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activity per unit area in the country, but also by its spatial variation.  Some countries like Canada 

have a high proportion of unlit or low intensity pixels, with a small portion of intensely lit pixels. 

In some other countries, most pixels are lit and the variation across pixels is more modest. In the 

estimation in columns 1-5, country fixed effects control for these differences across countries. 

But the issue seemed important enough to explore, especially since there can be noticeable 

within country changes in the dispersion of lights over time.  

If consumption is a concave function of lights, then for the same average, in principle, 

greater dispersion should be associated with lower consumption. We experimented with two 

indices of the dispersion (or bunching) of lights.5 First in column 6 of Table 2 we add a control 

for the ln (standard deviation) of lights across pixels by country-year. The sign is positive, rather 

than negative as could be expected; and adding in the control sharply reduces the elasticity with 

respect to mean lights. At the same time, the within 2R is little improved. We tried a translog 

specification in lights and its standard deviation to the same effect; in general the marginal effect 

of increasing variation in lights is associated with increased GDP.6  A basic problem with the 

standard deviation as a measure of dispersion is that it is not scale invariant. Indeed there is an 

extremely high correlation between mean lights and its standard deviation: the simple correlation 

coefficient after factoring out time and country fixed effects is .89, suggesting why including the 

standard deviation of lights adds little to explanatory power. Then in column 7 we tried the Gini 

as a measure of dispersion. In column 7, the coefficient on lights is the same as in column 2 and 

the coefficient on the Gini is 0; the Gini coefficient is also 0 in the long differencing version. 

2.2 Decomposing economic activity: population density versus consumption per person 

 Using light data to estimate total economic activity, as in the previous section, is useful in 

a number of contexts.  However, there are many applications in which economists are interested 

in measuring income or consumption per capita. Since population is more easily measured, is 
                                                
5 Note the Hirschman-Herfindahl index can be decomposed into a part related to the standard deviation and a part to 
do with number of pixels per country; the latter is already controlled for by country fixed effects.  
6 The explanation may be simple. As countries develop, they also urbanize, drawing population out of rural areas 
into dense urban areas. Additionally in this phase counties typically experience rising income inequality. In such 
contexts, increasing lights are strongly associated with greater dispersion in lights across the country. In the next 
section when we decompose GDP into population and per person income measures, we explored this issue in great 
detail looking at how mean lights’ effects vary in translog specifications and by quintile of standard deviations, as 
well as examining other measures controlling for light variation. The basic problem of finding positive effects of 
variation in lights on consumption remains, as does the very high partial, within country correlation between mean 
lights and its standard deviation. In the rest of the paper, we do not worry about trying to control separately for 
variation in lights, as well as its mean.  
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more available in general, and is much more available for much smaller geographic units than is 

GDP, this suggests that one could combine data on lights and population to produce estimates of 

GDP per capita in a number of contexts when it is not measured.  In this section we pursue this 

issue, starting with a discussion of why marginal increases in GDP per capita and population 

density may have differential effects on the measure of lights observed from space. 

 Our starting point is a structural relationship between consumption per capita and “true” 

light output.

/ ( / )alight person c consumption person� � ,      (2) 

Multiplying by people and dividing by jurisdictional area, we get  

/ ( / ) ( . )alight area c consumption person pop density� �   (3) 

In some circumstances, no lights in a jurisdictional area are observed. Then we would define 

observed lights as7

        . / max[0, ( / ) ( . ) ]aobs light area c consumption person pop density K� 	� .   (3a) 

For our benchmark case where all countries are lit, we work with equation (3). Later in 

discussing sub-national areas, we will examine the implications of (3a). 

                                                
7 In analyzing light data, as noted earlier there is an issue in measurement of aggregation across geographic units. 
Our readings are for pixels and when we give measured lights per jurisdictional area it involves averaging across 
pixels. Total lights for a jurisdiction area should reflect the following aggregation across pixels (j):

/ [ ( / ) ( . )]a
j j

j
light area b consumption person pop density� 
 �                

If through labor mobility within a jurisdiction, consumption per person is approximately equal then what varies 
across pixels is population. How uneven population densities (and hence light intensities) are within the 
jurisdictional unit doesn’t matter if the exponent on population density in the equation is one, but estimates suggest 
it is very different than one. As noted earlier in the text, attempts to control for this problem by controlling for 
measures of light dispersion, such as the standard deviation of light intensity across pixels in a jurisdictional area 
were thwarted by the very high correlation between mean and standard deviation of lights within jurisdictions over 
time. 
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We arrange (3) to focus on the variable which we want to predict in circumstances where 

it is not measured: consumption per person.8 Second, we don’t impose a restriction on the power 

to which population density is raised.

ln(consumption/person)it = c i +dt + (1/a)ln(lights/area)it – (b/a)ln(pop. density) + eit (4) 

In (4) as in (1a), we allow for time and jurisdictional fixed effects (�t and  ci) and we will 

experiment with different functional forms and controls for light dispersion.

Country level results 

As for total GDP estimates, we estimate equation (4) for a panel of countries covering 

166 countries over 12 years and for a sub-sample of 50 African countries in that time period.  

Table 3 presents results for the world. Column 1 pools the data, with time effects (only). Relative 

to the specification in equation (2) as estimated in (4), coefficients have anticipated signs and the 

coefficients on lights and population density have similar absolute values, although the lights 

coefficient absolute value significantly exceeds that for density. However in column 2, once we 

add in country fixed effects, results change dramatically. Now the density coefficient is much 

larger in absolute value than the lights one, with the absolute value of the density coefficient 

being a little over three times the lights coefficient, a relative difference that is at least 

maintained for all fixed-effect and long difference results.   

Column 2 is our preferred baseline to use in comparisons. The coefficients interpreted in 

equation (2) suggest lights are strongly convex in both consumption and density dimensions. As 

before this could reflect aspects of the relationship between “true” and observed lights, as well as 

the possibility of strong increasing returns to lights in both per person consumption and 

population.

Columns 3 and 4 of Table 3 explore other functional specifications. Column 3 adds an 

interactive term, which makes the lights coefficient insignificant. Column 4 explores the full 

translog, with little support for that functional specification. While a translog could be used, it 

adds little to the within 2R . Figure 6 plots lights against income, after factoring out the effect of 
                                                

8 While we are just estimating correlations, we prefer the specification in (4) per se. Non-parametric plots 
of ln(consumption/person)it on ln(lights/area)it after partialing out fixed effects and density versus plots of 
ln(lights/area)it on ln(consumption/person)it both suggested an estimate of a consistent with that in (4), as opposed to 
the estimate we get when estimating (3). 
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density, and fixed effects. The plot suggests a simple log-linear relationship, which we tend to 

rely on. In general the explanatory power of the model is high. The pooled model in column 1 

has an 2R of .74 and the within 2R ’s in later columns are about .40. Finally we note that controls 

for the two measures of dispersion from Table 2 produced similar results: the standard deviation 

of light remains highly collinear with mean lights and the Gini has an insignificant effect. Fixed 

effects seem to be a reasonable control for differences in geographic dispersion across countries. 

In column 5 of Table 3 we check robustness of fixed effects results identified off annual 

variations of data within countries by using long differences calculated from the first and last 2 

years of data for each country. A comparison of column 5 with 2 shows very stable results with 

very similar coefficients for both light and density. 

Finally in column 6, we look at the sub-sample of 50 African countries over the 12 years. 

The relative difference between absolute lights and density coefficients is smaller than for the 

whole world, possibly suggesting heterogeneity of effects. We estimated the model to see if 

coefficients differ more generally between the set of low and low-middle income countries as 

defined in the base year (1992) by the World Bank, and the set of upper middle and high income 

countries. The results suggest that our point estimates on coefficients of covariates in column 2 

are the same as those for low and low-middle income countries. Higher income countries have 

the same proportional difference between coefficients on lights and density, but smaller absolute 

magnitudes (.145 and -.555 respectively). Once total consumption is decomposed into population 

and per person consumption, low density Africa differs from other low income regions, with 

smaller negative effects on consumption for changes in population density holding lights fixed. 

2.3 Sub-national estimates of consumption per person 

Next we turn to an analysis of sub-national units to estimate equation (4) at finer 

geographic scale. We focus on Guatemala where we have consumption and population data for 

two time periods and nearly all jurisdictions are lit.  

Data

For Guatemala, harmonized municipio-level consumption data for 1994 and 2002, 

originally estimated by SEGEPLAN (2001, 2005) from census and survey data using the small 

area estimation methods of Elbers et al (2003), are from CIESIN (2005). In 2002 when there are 

readings from 2 satellites, we pick the one (F-15) which had the best area coverage of Guatemala.  

Results are not substantially different when the other satellite (F-15) is used.  
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Results for Guatemalan municipios 

In Figure 7a, we show the changes in lights in the sub-national areas of Guatemala from 

1994 to 2002. There appears to be a modest increase in light intensity in the north, with more 

substantial increases over most parts of the south. These light changes seem to go along with 

little change in population densities except possibly for increased densities around the major 

urban centers in the south (Figure 7c). Figure 7b seems to suggest overall income growth, 

particularly movement of hinterland areas in the south out of the lower income brackets. But the 

figures are hard to read. The comment on Figure 7b is consistent with a decline in spatial 

inequality; and we note there was a decline in the coefficient of variation in consumption per 

person across municipios from .52 to .45 in the 8 years. However, the idea that population 

clustered more near the urban centers is at odds with changes in the overall coefficient in 

variation for population across the municipios nationally, which drops from 1.99 to 1.84.  The 

question is whether regression analysis of consumption, lights and population inter-relationships 

can sort out the influences of population and consumption per capita on lights. 

In Table 4, we present results for the 1994 and then the 2002 cross-section of municipios 

in Guatemala. The results in columns 1 and 2 for the 2 different years are close, suggesting we 

could mechanically predict 2002 municipio consumption levels, with the 1994 data. As with the 

pooled world data, cross-section results show little gap in absolute values of the light and density 

coefficients, with the lights coefficient again exceeding that of density. However time 

differencing in column 3 again dramatically changes estimates. As for the world, now the 

absolute value of the density coefficient exceeds the lights one by a large amount— for 

Guatemala by over fivefold. Again this suggests in equation (2) sharp returns to population 

density in producing lights across municipios. 

2.4 The problem of unlit jurisdictions  

In Guatemala in 2002 all sub-national jurisdictions are lit; and, in 1994, 89% are lit. In 

estimation in Table 4, in both the overtime comparison and the 1994 cross-section, we discarded 

the unlit jurisdictions. Is that inappropriate? To try to look at this question we turned to an area 

of the world for which we have data, albeit just cross-section data, where much higher 

percentages of sub-national jurisdictions are unlit. These are the African countries of Madagascar, 

Mozambique, and Malawi, for the years 1993, 1998, and 1997 respectively. Since the data are 

only cross-sectional, our reporting is brief and highlights just two key findings. 
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In equation 3a, we indicated that lights are only recorded if light output is sufficient. In 

the absence of a way to independently define a cut-off point, we model this as a Heckman (1979) 

selection problem. We pooled the 2019 3rd level administrative regions of the three African 

countries of which 22% are lit. Then we jointly estimated by MLE the likelihood of areas not 

being lit, along with the likelihood for the level of lighting if lit, both as functions of population 

density and per person consumption (and country dummies). We note the error drawings on 

observed lights and the event of whether lights are observed or not are somewhat different. For 

lit areas, the difference between observed and “true” lights may vary by satellite and equipment, 

as discussed above. Whether lights are “observed” or not involves an additional element: low 

readings are censored by filtering as noted in Section 1.  

We note two results from the MLE estimation of the selection model for the 

administrative areas of the three African countries.9 First, modeling selection itself is not 

important. In the MLE results, a Hausman test could not reject equality of the coefficients on a 

lights equation (relevant version of (3)) between the MLE results and the OLS results on the sub-

sample of lit areas; in fact the coefficients were virtually identical. Second, the correlation 

coefficient between the error terms while positive is not significant at the 5% level (t-stat. = 1.77). 

Thus a tentative conclusion is that one can model outcomes for just lit areas without worrying 

about selection. The second result is that, at least in cross-sectional work, if one wants to model 

whether an area is lit or not, the simple Probit model predicts well, with both consumption and 

population density effects being highly significant.10  For example, in Mozambique about 26% of 

jurisdictions are lit. At minus 2 standard deviations of the two covariates, the probability of a 

jurisdiction being lit is 0.43% while at plus 2 standard deviations, it is 83%. 

3. Application: Does local agriculture contribute to local city growth? 

As noted in the introduction, urban economists model city growth as a process 

disconnected from agriculture in both theory (e.g., Black and Henderson, 1999, with Henderson 

                                                
9 Estimates for Madagascar (Mistiaen et al 2002), Malawi (Benson et al 2002) and Mozambique (Simler 

and Nhate 2005) use the same method and source as Guatemala, but only one year of data per country is available: 
1993, 1998, and 1997, respectively. 

10  Marginal effects of ln (consumption per person) and ln (population density) are respectively .164 and ..084 (with 
s.e.’s of .0243 and .0066).  
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and Wang 2005 and Brueckner 1990 as exceptions) and empirically (Glaeser et al 1992 and 

Glaeser and Saiz 2004). Development economists have long recognized the rural-urban 

interaction in two-sector models dating back to Lewis (1954), but many of these models take 

aggregative approaches with the idea that a poor rural sector is a source of labor for the growing 

urban sector. On the empirical side, Brueckner (1990) looks at city sizes as they relate to rural-

urban income gaps. Using aggregate country data, he finds that higher rural incomes retard 

urbanization and the growth of the largest city in a country. Da Mata et al (2007) using data on 

Brazilian city population growth find that higher rural incomes in city hinterlands also retard city 

population growth.

What these approaches generally miss however is the positive side: higher rural incomes 

can contribute to local urban economic growth, something that is hinted at in the new economic 

geography literature (Krugman, 1991), as well as in da Mata et al (2007) for Brazil. This notion 

has long been pushed by agricultural economists, as well as a few growth economists (e.g., 

Kuznets, 1964; Kogel and Prskawetz 2001, Irz and Roe 2005, Tiffin and Irz, 2006). Local 

agricultural growth can generate local savings and investment in manufacturing and services, 

which are more urbanized activities. Farmers in a city hinterland with increased incomes demand 

more urban output such as farm machinery, household items and personal and business services.  

However no studies have had the data to do a convincing empirical analysis, to show that 

exogenous increases in farm incomes in a city’s hinterland causally spur urban income growth 

for that city. In this section we examine a panel of 541 cities in 18 African countries over 9 years. 

For 14 of the countries this covers all cities for 2008 over 10,000 within 3 km of a night light 

source, while for the other countries the minimum population size is 5,000- 20,000. We have 

annual data on rainfall and on lights. Rainfall is an exogenous source of increases in agricultural 

yields and incomes in many African contexts (Miguel, Sergenti and Satyanath, 2004; World 

Bank, 2005). We don’t have consumption data for these cities at all, and we have at most 

population data for one year for the time period for which we have detailed rainfall. However we 

have lights for every year. Our presumption is that increased rain increases agricultural income 

in urban hinterlands. Farmers’ spending increases demand for urban goods and thus urban 

incomes. This rise in urban consumption leads to an increase in lights. We test the net result 

directly—increased rainfall spurs urban income growth.

The formulation we use is 
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In equation (5) after allowing for city and time fixed effects, this and prior years’ rainfall affect 

current lights. We will find that effects attenuate at k = 4; and we will look at the falsification test 

of adding a lead year of rain. An issue in estimation of (5) concerns the distribution of the it� .

We allow for clustering of the it�  by city, but the process may be more distinct. We might expect 

serial correlation along the lines of an AR[1] process. Other weather conditions and urban 

conditions facing a city that vary over time may be serially correlated in a common fashion 

across cities. We will look at both fixed effects and AR[1] estimates. 

In application of equation (5), the impact of agricultural rain may differ according to the 

urban context. Large industrialized cities may operate more on their own, being more reliant for 

growth on national and international trade in industrial goods. Smaller cities may be more 

grounded in local hinterland economies and more sensitive to changes in agricultural 

productivity. We explore this by looking at whether effects vary between regular cities in the 

sample and primate cities. We define primate cities as the largest or the effective capital cities in 

each of our 18 countries.  For all but Malawi, the capital and largest city are the same. We will 

also look at how results differ for cities less than versus more than 200,000 people.

While, in interpreting equation (5), we assign lights the role of measuring growth in local 

urban incomes, there is another channel. Increased urban lights could reflect increased city 

population (noting we control for city and time fixed effects). We believe that city population 

effects go against our results, because improved agricultural incomes deter migration from rural 

hinterlands to cities, as found in Brueckner (1990) and da Mata et al (2007).

City Data 

We have two sources of data for our Africa cities. First are lights data for pixels covering 

Africa from 1995-2003. We have no city boundaries, so we define cities in the first pass as 

contiguous lit areas. Figure 8a illustrates for a hypothetical situation. The contiguous sections of 

lights on the landscape are marked for different years. We draw the outer envelope of contiguous 

lit pixels across all years and define this as the potential urban area. Then, as shown in Figure 8b, 

we map in jurisdictional cities as points, based on geo-coordinates identified with each city (see 
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data appendix).   The population for each lit area is the sum of the city populations in that area. 

In the overwhelming majority of cases (502 of 541), there is only one city per lit area (as in the 

south-east corner of Figure 8b) but larger urban areas may consist of several jurisdictions as 

pictured in the northwest portion of Figure 8b, where 3 cities make up the urban area. The 

second data source is annual rainfall estimates (Love et al 2004), recorded on a 0.1 degree grid 

(approximately 124 km^2 at the equator). For each lit area we draw a 30 km buffer around the 

green envelope pictured in Figure 8b to create a catchment area and we measure average rainfall 

over all grid entries in that catchment area.11

Basic results for rainfall effects on urban incomes 

Columns 1-5 in Table 5 state the basic results. With just clustered robust errors, columns 

1-4 show different lag structures. Column 1 is rain in the contemporaneous year; column 2 

allows for 3 years of effects; column 3 for 4 years; and column 4 for 5 years. It is clear rain from 

2 years before the present still has a significant effect on urban income.  In columns 3 and 4 

coefficients for rain from 3 years prior to the current year are weak and in column 4 rain from 4 

years prior has an insignificant (negative) coefficient. We generally use a lag structure with 3-4 

years of rain, including the current year. In column 5 we re-estimate column 3 imposing an 

AR[1] process. That process reduces the rain effect of the first year. In columns 6 and 7 we 

conduct a falsification test by adding a lead year of rain, which should have no effect. With an 

AR[1] process modeling serial correlation, the lead year has no effect, but it appears to do so for 

the ordinary panel estimates.  

Finally in columns 8 and 9 we look at long differences to test robustness. In column 8, we 

show the effect on long differences in rainfall on long differences in lights with no lag structure. 

In column 9, we allow for difference in lights between years t and s to be influenced by 

differences in rain between t and s, between t-1 and s-1 and between t-2 and s-2. Despite the 

noise in the data, the effects are very clear. Increases in rain and inferred agricultural 

productivity lead to increases in light as in the panel.

Rainfall effects are arguably large. A one standard deviation increase in rain (.90 

mm/day) in the current or any of the prior two years each leads roughly to a 14.4% increase in 

lights. From Table 2 a 14.4% increase in lights represents about a 3.3% increase in GDP for a 

                                                
11 Results were broadly similar when radii from 20 to 70 km were used. 
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city.  A sustained increase in rain over several years in Africa would have a strong effect on 

urban incomes.  

However the effect of hinterland rain on city growth differs by type of city. Bigger, more 

industrialized cities are less dependent on their hinterlands, as are political centers. Table 6 

shows that primate cities have much lower rainfall effects. For one year of rain the coefficient 

of .155 is just .054 for primate cities. For 3 years of rain the coefficients for year t, t-1 and t-2 

are .16, .15, and .15 for ordinary cities, while for primate cities they are .085, .075 and .051. For 

the 29 cities over 200,000 in 1995 versus smaller cities, in column 3, the differential in 

coefficients is almost the same as column 2. Allowing for an AR[1] structure in columns 4 and 5 

reduces the net impact of rain on large cities to zero, but we note that estimates on the primate 

city-rain interaction terms are imprecise. 

4. Conclusions 
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Data appendix: 

A. Lights 

The Version 2 Defense Meteorological Satellite Program Optical Linescan System (DMSP-OLS) 
Nighttime Lights Time Series data are available from the National Oceanic and Atmospheric 
Administration’s (NOAA) National Geophysical Data Center (NGDC) as a series of annual 
composites, currently for 1992-2003.  This most recent version of the data is a series of 18 
annual composites from 4 satellites each operating for overlapping periods of 3 to 6 years 
between 1992 and 2003.

Each annual composite is a raster (grid) dataset with values every 30 seconds of latitude and 
longitude (approximately 0.86 km^2 at the equator, decreasing with the cosine of latitude) 
between 65 degrees North and 65 degrees south latitude.  The exclusion of high latitude zones 
affects approximately 3 million people, of 0.05% of the global total, in 7 countries.  Each grid 
value is an eight-bit integer (0-63), averaged for over all nights fitting certain criteria (i.e. not too 
much moonlight, sunlight, aurora activity or cloud cover). They were compiled and cleaned, 
removing temporary features such as forest fires, by NGDC.12  A calibration has been applied to 
ensure greater comparability across satellite-years, but they cannot be interpreted directly as 
physical units of light (Chris Elvidge, personal communication).

Global lights data have several problems besides this lack of true calibration. First, the sensor 
saturates at a level of light that is very common in the cities and towns of rich countries, resulting 
in topcoded values.  At high latitudes no summer data can be used because sunlight is still 
contaminating images at local pass times of 8:30 to 10 pm.  This effect is diminished closer to 
the equator. The data are subject to overglow or blooming, which means that lights tend to 
appear larger than they actually are, especially for bright lights and over water.  Snow tends to 
magnify light values.  Humidity, which varies significantly across the continent, is known to 
affect the performance of other sensors but has never been studied in relation to the DMSP-OLS. 
Many of these problems are less in the Africa city examination: less instances of top-coding, no 
long summer nights, no snow.  Further details about the lights data and processing can be found 
in Elvidge et al. (1997, 1999, 2002, 2003, 2005), Lieske (1981), and Small, Pozzi and Elvidge 
(2005).

For the Africa section of the present paper, lights were processed as follows.  First, all 18 light-
years were combined to produce a set of 9189 non-contiguous polygons in which all pixels were 
lit for at least one year, of which 2323 have centroids falling within the 18 countries with 
population data. For each, the total calibrated digital number for each satellite-year, as well as the 
minimum and maximum pixel, were reported.

B. Consumption data 

Harmonized municipio-level consumption data for 1994 and 2002 for Guatemala, originally 
estimated by SEGEPLAN (2001, 2005) from census and survey data using the small area 

                                                
12 Available at http://www.ngdc.noaa.gov/dmsp/global_composites_v2.html 
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estimation methods of Elbers et al (2003; hereafter ELL), are from CIESIN (2005).13 The 1994 
and 2002 data rely on censuses in their nominal years but surveys from 1998-99 and 2000, 
respectively. 

The ELL method proceeds as follows.  First, as large a set as possible of comparable attributes 
from a census and a survey for the same population and similar years are selected.  In the 2002, 
this set was supplemented with municipio-level averages. Next these attributes are used in a set 
of reduced form regressions predicting consumption in the survey.  In the case of the 1994 
Guatemala work, 12 separate regional regressions were run, 4 rural and 8 urban.  In 2002, 7 
urban, 7 rural, and 1 integrated (Metropolitana province) regression were run.   The estimated 
coefficients are applied to all the census households to generate predicted household 
consumption.  Lastly, the household consumption measures are aggregated to regional averages, 
with standard errors produced by Monte Carlo simulation. 

The regression variables for the 1994 map include electrical connection, type of lighting system 
and cooking fuel.  Elbers et al (2005) argue that this does not create endogeneity problems for 
regressions that use consumption estimates to predict e.g. lighting that are any more significant 
than those that would be found in regressions of lighting on true consumption.  The use of 
estimates does change the standard error calculation though, an issue that should be considered 
in future work.  Because the errors reported under the ELL method have recently been called into 
question by Tarozzi and Deaton (2007), this will require careful study. 

C. Africa data 
 
City location and population 
City population data are from citypopulation.de.  Only countries for which information is 
available from at least two different post-1979 censuses (i.e. not projections or estimates) are 
used.  In addition, I required that at least one census was after 1995.  Island states were also 
dropped.  While these figures are not taken directly from the official census bureaus, spot checks 
suggest that they are consistent with the official figures, where available.  Four countries 
(Algeria, Egypt, Morocco and Tunisia) were dropped because massive agglomerated lights 
containing significant proportions of their populations make them qualitatively different than the 
rest of the continent.  Three more, (Republic of Congo, Swaziland and Lesotho) were dropped 
because of significant contamination across their borders by lights from other countries, namely 
Democratic Republic of Congo, Angola and South Africa).  While this is in itself an interesting 
phenomenon, it would render interpretation too difficult for the present exercise.  Lastly, 
Western Sahara was removed because its sovereignty has been contested over the course of the 
study period. This left 18 countries (listed in Table A2) and 767 cities. 

While all countries in this sample have city populations for most cities for at least two censuses, 
both after 1979 and one after 1995, a minority of cities in these countries have population data 
for only one year after 1979.  A second census as far back as 1969 is used for 61 these cities. In a 
final 110 cities, only one census is available.  For these cities, growth rates are imputed from the 
cities in that country for which multiple censuses are available. 

                                                
13 Available at http://sedac.ciesin.columbia.edu/povmap/ 
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In most countries, all settlements of more than 10,000 are purported to be reported.  However, 
Mozambique and Ghana’s nominal cutoffs are 20,000, Mauritania’s is 15,000, Central African 
Republic’s is 5,000, and Rwanda lists no cutoff.  Furthermore, the benchmark year for these 
cutoffs is never specified, and in practice, 14 of 767 cities have a lower population than their 
nominal cutoff for any year up to 2008. 

Latitudes and longitudes for African cities 
These were assigned from three sources: citypopulation.de, the Gridded Rural Urban Mapping 
Project (CIESIN et al 2005), and world-gazetteer.com.  Locations were validated with respect to 
satellite imagery in Google Earth to ensure that they indeed fell in or very near a city.  However, 
no further information was available to ensure that it was the named city, other than the three 
original sources.  In a few instances, one of the three coordinate sources was chosen because it 
placed the city within a light, whereas another source did not.  We consider this appropriate 
because we are not attempting to demonstrate the well-known collocation of cities and lights (e.g. 
Welch 1980), but rather to use this fact for further analysis.  For fifteen cities in three countries 
(Tanzania, Mauritania, and Ghana) no coordinate information was available. 

Lights and population 
Each light in the sampled countries is assigned the population of all cities within 3 kilometers.  
This reduced the set of city-points from 767 to 656.  The three kilometer buffer is used because 
of measurement error in the latitude/longitude data and the georeferencing of the lights, 
following Balk et al. (2004) and CIESIN et al. (2005).  In most cases, the points that fell within 3 
km fell within 1 km, as would be expected from simple rounding of coordinates to the nearest 
hundredth of a degree.  Of the 2323 lights, in the 18 countries, 541, or 23% contain at least one 
city for which we have population.  However, the others are far less bright and/or extensive 
lights, consistent with the idea that they correspond to smaller settlements not included in the 
population data. Thirty-five such lights that contain cities in sampled countries cross a border, at 
least according to one common set of international boundaries.  Of these, seven contain cities on 
both sides of the border.14 111 city points were dropped in this process because they were not 
near enough to a sampled light.  Only one of these has a population over 25,000, and it would 
have fallen within a light whose centroid fell in another country if such matches were allowed. 
Only six more have populations over 20,000, and one of these would have fallen within a light 
whose centroid fell in another country if such matches were allowed. 

Rainfall
Rainfall data for each 0.1 degree grid cell (approximately 124 km^2 at the equator) are from the 
NOAA Climate Prediction Center's Africa Rainfall Climatology (ARC; Love et al. 2004).
Unlike most commonly used rainfall data, these are estimates based on both rain gauges and 
satellite measurements.  The addition of satellite measurements is especially important in Africa, 
where stations are sparsely located.  It means that neighboring observations are significantly less 
dependent than those based on stations alone. Ideally we would calculate rainfall for years 
corresponding to agricultural seasons, like Maccini and Yang (2008).  However, seasons vary 
across Africa, and the lights composites are only available for calendar years anyway. 

                                                
14 This of course requires both countries to be in the sample – in a few other cases it is possible that a city in an 
unsampled country falls within the same light. 
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Table 1: Night Lights Data for Selected Countries, 1992-2003      
           
Digital 
Number USA Canada Netherlands Brazil 

Costa 
Rica Guatemala Bangladesh Madagascar Mozambique Malawi 

0 67.74% 93.38% 0.89% 94.07% 69.10% 82.37% 68.20% 99.74% 99.56% 97.65%
1-2 0.00% 0.00% 0.00% 0.01% 0.00% 0.01% 0.30% 0.00% 0.01% 0.00%
3-5 6.36% 0.46% 0.38% 2.20% 11.33% 9.78% 20.02% 0.13% 0.23% 0.84%
6-10 13.42% 3.24% 17.15% 2.13% 13.01% 5.13% 7.99% 0.07% 0.11% 0.95%
11-20 5.89% 1.68% 32.05% 0.79% 3.56% 1.57% 2.02% 0.03% 0.04% 0.29%
21-62 5.56% 1.15% 46.37% 0.71% 2.54% 0.99% 1.36% 0.03% 0.04% 0.27%
63-65 1.02% 0.09% 3.16% 0.09% 0.45% 0.16% 0.10% 0.00% 0.00% 0.01%
% area unlit 64.87% 92.14% 0.85% 94.28% 69.53% 82.89% 68.04% 99.74% 99.58% 97.16%
avg. DN 5.0249 0.8947 22.3948 0.6664 3.1691 1.4412 2.2637 0.0257 0.0398 0.3135
gini(DN) 0.8286 0.9597 0.3636 0.9682 0.8229 0.8958 0.7929 0.9985 0.9977 0.9864
           
notes:            
1) values of 64 and 65 are possible because of intercalibration      
2) % area unlit accounts for differences in cell area, whereas the percentage of cells having digital number 0, 1-2, etc. does not 
3) each figure is calculated within satellite-years, averaged across satellites within a year, and then across years  
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Table 2: Baseline results for the world, total GDP, 1992-2003    
 (1) (2) (3) (4) (5) (6) (7) 
 ln(GDP) ln(GDP) ln(GDP) �ln(GDP) ln(GDP) ln(GDP) ln(GDP) 
ln(lights/area) 0.3776*** 0.2321*** 0.2290***  0.3175*** 0.1246*** 0.2316*** 
 [0.0193] [0.0190] [0.0204]  [0.0301] [0.0320] [0.0195] 
ln(lights/area)2   -0.0022     
   [0.0034]     
�ln(lights/area)    0.3005***    
    [0.0412]    
ln(std.dev.(lights))      0.2070***  
      [0.0585]  
gini(lights)       -0.0069
       [0.1006] 
Constant 24.0196*** 23.9808*** 23.9899*** 0.2262*** 23.5927*** 23.6705*** 23.9866***
 [0.1562] [0.0134] [0.0178] [0.0183] [0.0686] [0.0877] [0.0874] 
Observations 1984 1984 1984 164 588 1984 1984
Number of 
countries  166 166  49 166 166
(Within) R-
squared 0.133 0.686 0.686 0.299 0.739 0.691 0.686
Overall R-sq  0.132 0.133  0.0141 0.159 0.132
Between R-sq  0.131 0.132  0.0106 0.159 0.13
country fixed 
effects no yes yes no yes yes yes 
time dummies yes yes yes no yes yes yes 
Region World World World World Africa World World 
Robust standard errors in brackets      
*** p<0.01, ** p<0.05, * p<0.1       
Note: in column 5, long differences are calculated by averaging the first two and last two years 
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Table 3: Baseline results for the world, per capita GDP, 1992-2003   
 (1) (2) (3) (4) (5) (6) 
 ln(GDPp.c.) ln(GDPp.c.) ln(GDPp.c.) ln(GDPp.c.) �ln(GDPp.c.) ln(GDPp.c.)
ln(lights/area) 0.6241*** 0.2217*** 0.0863*** 0.0394  0.3080*** 
 [0.0080] [0.0183] [0.0323] [0.0561]  [0.0272] 
ln(pop. dens.) -0.4658*** -0.7902*** -0.7294*** -0.9993***  -0.3811*** 
 [0.0138] [0.0570] [0.0581] [0.1358]  [0.1449] 
ln(lights/area)*ln(pop. dens.)  0.0340*** 0.0414***   
   [0.0072] [0.0122]   
ln(lights/area)^2    -0.0137***   
    [0.0048]   
ln(pop. dens.)^2    0.0322**   
    [0.0152]   
�ln(lights/area)     0.2889***  
     [0.0412]  
�ln(pop. density)     -0.8593***  
     [0.1185]  
Constant 10.3519*** 11.5197*** 11.2100*** 11.7470*** 0.2082*** 9.3838*** 
 [0.0699] [0.2238] [0.2321] [0.3237] [0.0250] [0.4981] 
Observations 1984 1984 1984 1984 164 588 
Number of 
countries  166 166 166  49 
(Within) R-squared 0.738 0.467 0.477 0.486 0.365 0.399 
Overall R-sq  0.0231 0.0415 0.0385  0.636 
Between R-sq  0.0218 0.0397 0.0367  0.64 
country fixed 
effects no yes yes yes no yes 
time dummies yes yes yes yes no yes 
Region World World World World World Africa 
Robust standard errors in 
brackets      
*** p<0.01, ** p<0.05, * p<0.1      
Note: in column 5, long differences are calculated by averaging the first two and last two years 
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Table 4: Baseline results for Guatemala, 1994-2002 
 (1) (2) (5) 

 
ln(consumption 

p.c.) 
ln(consumption 

p.c.) 
ln(consumption 

p.c.) 
ln(lights/area) 0.2353*** 0.2458*** 0.0789*** 
 [0.0188] [0.0181] [0.0275] 
ln(pop. density) -0.1930*** -0.1612*** -0.4291*** 
 [0.0325] [0.0332] [0.1129] 
Constant 9.1836*** 8.9711*** 0.1824*** 
 [0.1479] [0.1594] [0.0473] 
Observations 293 330 293 
R-squared 0.350 0.366 0.093 
Satellite 10 15 10,15 
Year 1994 2002 1994-2002 
Robust standard errors in brackets   
*** p<0.01, ** p<0.05, * p<0.1   
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Table 5: Results for African rainfall and city growth, 1995-2003      
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) 
rain(t) 0.1518*** 0.1590*** 0.2012*** 0.1486*** 0.1211*** 0.1654*** 0.2507*** 0.4917*** 0.0246 
 [0.0407] [0.0431] [0.0496] [0.0507] [0.0370] [0.0497] [0.0594] [0.1517] [0.1023] 
rain(t-1)  0.1505*** 0.1603*** 0.1833*** 0.1561*** 0.1853*** 0.1789***  0.2307** 
  [0.0352] [0.0445] [0.0583] [0.0385] [0.0527] [0.0517]  [0.0927] 
rain(t-2)  0.1448*** 0.1555*** 0.1640*** 0.1730*** 0.1255** 0.1319**  0.3068*** 
  [0.0395] [0.0420] [0.0522] [0.0374] [0.0503] [0.0531]  [0.1013] 
rain(t-3)   0.0736* 0.0900* 0.1209*** 0.1061** 0.0784*   
   [0.0421] [0.0491] [0.0373] [0.0435] [0.0436]   
rain(t-4)    -0.0513      
    [0.0426]      
rain(t+1)      -0.0126 0.1076**   
      [0.0436] [0.0498]   
Constant 4.9791*** 4.7365*** 4.6785*** 4.5744*** 4.4732*** 4.6808*** 4.1621*** 0.3595*** 0.4230*** 
 [0.0923] [0.1735] [0.2487] [0.3648] [0.1317] [0.2324] [0.3736] [0.0597] [0.0617] 
Observations 4869 3787 3246 2705 2705 2164 2705 541 541 
Cities 541 541 541 541 541 541 541 541 541 
(Within) R-sq 0.0460 0.0555 0.0406 0.0483 0.0373 0.0408 0.0434 0.025 0.032 
Overall R-sq 0.0018 0.0180 0.0282 0.0282 0.0306 0.0320 0.0293   
Between R-sq 0.0342 0.0355 0.0402 0.0418 0.0430 0.0430 0.0390   
city fixed 
effects yes yes yes yes yes yes yes no no 
time dummies yes yes yes yes yes yes yes no no 
error 
treatment 

robust, 
cluster on 

city 

robust, 
cluster on 

city 

robust, 
cluster on 

city 

robust, 
cluster on 

city 

AR[1] AR[1] robust, 
cluster on 

city 

robust, long 
differences 
(first and 

last years) 

robust, long 
differences 

(first and last 
two years) 

*** p<0.01, ** p<0.05, * 
p<0.1         
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Table 6: Rainfall: differential effect on primate cities, 1995-2003   
 (1) (2) (3) (4) (5) 
 ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1)
rain(t) 0.1554*** 0.1612*** 0.1634*** 0.1385*** 0.1423*** 
 [0.0420] [0.0443] [0.0454] [0.0316] [0.0321] 
primate*rain(t) -0.1014** -0.0764* -0.0842** -0.1362 -0.1415 
 [0.0460] [0.0426] [0.0421] [0.1573] [0.1196] 
rain(t-1)  0.1522*** 0.1538*** 0.1102*** 0.1131*** 
  [0.0361] [0.0367] [0.0315] [0.0319] 
primate*rain(t-1)  -0.0772* -0.0790** -0.1155 -0.119 
  [0.0423] [0.0371] [0.1654] [0.1218] 
rain(t-2)  0.1475*** 0.1475*** 0.1081*** 0.1101*** 
  [0.0406] [0.0414] [0.0316] [0.0320] 
primate*rain(t-2)  -0.0965** -0.0621 -0.1013 -0.0936 
  [0.0451] [0.0456] [0.1527] [0.1186] 
Constant 4.9785*** 4.7401*** 4.7406*** 5.2171*** 5.2157*** 
 [0.0924] [0.1722] [0.1720] [0.0828] [0.0827] 
Observations 4869 3787 3787 3246 3246 
Cities 541 541 541 541 541 
(Within) R-sq 0.0461 0.0557 0.0558 0.0365 0.0368 
Overall R-sq 0.0111 0.0458 0.0587 0.0811 0.117 
Between R-sq 0.0815 0.0775 0.0966 0.119 0.166 
primate def'n political political pop>200k political pop>200k 
error structure robust, cluster 

on city 
robust, cluster 

on city 
robust, cluster 

on city 
AR[1] AR[1] 

city fixed effects yes yes yes yes yes 
time dummies yes yes yes yes yes 
standard errors in brackets     
*** p<0.01, ** p<0.05, * p<0.1     
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Table A1: Descriptives       
Variable Obs Mean std. dev. Min Max Sample years 
ln(GDP p. c.) 1984 8.411 1.124 6.130 10.823 Global countries 1992-2003 
ln(lights/area) 1984 -0.002 2.057 -5.750 4.178 Global countries 1992-2003 
ln(pop. dens.) 1984 4.018 1.434 0.342 8.856 Global countries 1992-2003 
gini(lights) 1984 0.827 0.210 0.045 1.000 Global countries 1992-2003 
ln(std. dev.(lights)) 1984 1.427 0.943 -1.269 3.085 Global countries 1992-2003 
ln(GDP p. c.) 600 7.438 0.836 6.130 9.729 African countries 1992-2003 
ln(lights/area) 600 -1.851 1.719 -5.750 2.702 African countries 1992-2003 
ln(pop. dens.) 600 3.565 1.278 0.606 6.419 African countries 1992-2003 
�ln(GDPp.c.) 164 0.157 0.208 -0.520 0.828 Global countries 1992-2003 
�ln(lights/area) 164 0.265 0.362 -1.119 1.525 Global countries 1992-2003 
�ln(pop. density) 164 0.149 0.117 -0.140 0.647 Global countries 1992-2003 
ln(consumption) 330 8.361 0.398 7.518 9.713 Guatemalan municipios 1994
ln(lights/area) 330 0.856 1.442 -3.281 4.078 Guatemalan municipios 1994
ln(pop. dens.) 330 5.088 1.084 0.528 8.492 Guatemalan municipios 1994
ln(consumption) 293 8.313 0.466 6.838 9.789 Guatemalan municipios 2002
ln(lights/area) 293 0.226 1.694 -4.761 3.870 Guatemalan municipios 2002
ln(pop. dens.) 293 4.786 1.130 0.191 8.172 Guatemalan municipios 2002
�ln(consumption) 293 0.103 0.300 -0.772 1.012 Guatemalan municipios 1994-2002 
�ln(lights/area) 293 0.800 0.715 -0.437 3.683 Guatemalan municipios 1994-2002 
�ln(pop. dens.) 293 0.332 0.147 0.028 0.939 Guatemalan municipios 1994-2002 
ln(pop. dens.) 1999 3.657 1.761 -3.522 9.924 southern African admin. units various 
lit 1999 0.217 0.412 0.000 1.000 southern African admin. units various 
ln(lights/area) 434 -0.179 2.746 -7.600 4.140 lit southern African admin. units various 
ln(pop. dens.) 434 5.331 1.880 -2.407 9.924 lit southern African admin. units various 
ln(lights+1) 4869 5.548 2.126 0.000 11.426 African cities with population data 1995-2003 
rain(t) 4869 1.903 0.904 0.007 5.111 African cities with population data 1995-2003 
rain(t-1) 4328 1.886 0.893 0.007 5.111 African cities with population data 1996-2003 
rain(t-2) 3787 1.896 0.899 0.007 5.111 African cities with population data 1997-2003 
rain(t-3) 3246 1.896 0.900 0.007 5.111 African cities with population data 1998-2003 
rain(t-4) 2705 1.943 0.921 0.007 5.111 African cities with population data 1999-2003 
rain(t+1) 4328 1.893 0.894 0.007 5.111 African cities with population data 1995-2002 
primate 4869 0.035 0.184 0.000 1.000 African cities with population data 1995-2003 
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Table A2. African countries with city population data       
country census 

1 
census 
2 

census 
3 

unit population 
cutoff 

World 
Urbanization 
Prospects 
2007cutoff 

number 
of city 
points 

number 
of city 
lights 

number 
of lights 

Benin 1992 2002  urban localities 10,000 10,000 64 29 56
Burkina Faso 1985 1996 2006 urban localities 10,000 10,000 44 38 58
Botswana 1991 2001  towns 10,000 5,000 27 21 128
Central African 
Republic 1988 2003  cities 5,000 3,000 37 14 27
Ghana 1984 2000  urban localities 20,000 5,000 69 34 256
Guinea 1983 1996  urban areas 10,000  27 23 66
Kenya 1989 1999  towns 10,000 2,000 62 47 220
Mozambique 1980 1997 2007 principal cities 20,000  34 32 136
Mauritania 1988 2000  communes 15,000 5,000 25 16 33
Malawi 1987 1998  towns 10,000  19 19 87
Namibia 1991 2001  towns 10,000  19 16 190
Niger 1988 2001  urban centers 10,000 2,500 36 31 135

Rwanda 1991 2002  
principal 
municipalities none  15 12 13

Senegal 1988 2002  urban communes 10,000 10,000 51 38 143
Tanzania 1988 2002  urban localities 10,000  104 74 255
Uganda 1991 2002  towns 10,000 2,000 60 39 67
Zambia 1990 2000  localities 10,000 5,000 37 30 135
Zimbabwe 1992 2002  towns 10,000 2,500 37 28 318
Subtotal       767 541 2,323
All other African countries        6,866
Africa Total         9,189



Figure 1: Lights at night, 2003
Robinson projection



Satellite F-10, 1992 0 100 200 km Satellite F-15, 2002 Albers Equal Area Conic Projection

Ukraine

Romania

Poland

Belarus

Hungary

Slovakia

Republic of Moldova

Serbia and Montenegro

Ukraine

Romania

Poland

Belarus

Hungary

Slovakia

Republic of Moldova

Serbia and Montenegro

Figure 2: Eastern Europe in Lights
Digital Number

0 - 1 2 - 4 5 - 8 9 - 12 13 - 24 25 - 63



2003

Digital number
0

1

2

3

4

more than 4

Fivondrona boundaries

Firaisana boundaries

0 20 4010 km

1999

Ihosy

Sakaraha

Ilakaka

Figure 3: Discovery of sapphire and ruby deposits in Madagascar

1998

Universal Tranverse Mercator projection



−.
5

0
.5

1
Lo

g(
G

D
P

) n
et

 c
ou

nt
ry

 a
nd

 y
ea

r F
E

s

−.5 0 .5
log(light density) net country and year FEs

note: excludes 3 points to the left and 4 to the right

Figure 4.  GDP versus lights: panel
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Figure 5: GDP versus lights: long differences
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Figure 6. GDP per capita versus lights
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