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1 Introduction

Every two years, the United Nations Population Division (UN) publishes the World Pop-

ulation Prospects (WPP), which include projections for populations of over 200 countries

through the next 50 years. The UN accounts for uncertainty in population projections by

projecting population size with total fertility rates that are higher and lower than those as-

sumed in the main projection. However, UN projections do not account for any uncertainty

estimates in mortality projections. For comparability, a common forecasting method should

be implemented across countries. We propose a probabilistic projection model of life ex-

pectancy at birth where the expected future increases in life expectancy are estimated with

a Bayesian hierarchical model.

The most familiar practice for forecasting mortality is the Lee-Carter method (Lee &

Carter, 1992). The Lee-Carter method produces independent country-specific forecasts based

on fixed age effects and additive normally distributed homoskedastic error terms over time.

When forecasting a group of countries simultaneously, a common age parameter is fixed to

ensure consistent forecasts of multiple countries (Li & Lee, 2005). The Lee-Carter method

has been shown to perform well (see for example Booth et al., 2005 and Bell, 1997), however,

these approaches rely on the availability of age-specific death rates for at least three time

periods (Li et al., 2004), which may not be available for most developing countries.

Lutz and colleagues at the International Institute for Applied Systems Analysis (IIASA)

addressed data limitation by aggregating countries into regions and forecasting regional life

expectancy based on expert-based probabilistic projections (Lutz et al., 2004). Like IIASA,

we project life expectancy at birth, however, we propose a random walk with non-constant

drift. We model the non-constant drift using a Bayesian hierarchical model. This allows

country-specific projections to be made while borrowing information from past trends of

other countries.
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Because of the differences between countries in empirical data availability for the es-

timation of life expectancy, we use readily available expert-based estimates in this initial

time-series analysis. We use male life expectancy at birth, e(0), estimates from the UN

World Population Prospects (WPP) 2006 Revision from 1950 through 2005 (Nations, 2007).

Because of the significant impact of the HIV/AIDS epidemic on mortality rates, our analysis

focus on countries without a generalized HIV/AIDS epidemic.

In this article, we first briefly discuss the data, methodology used by the UN for pro-

jections and develop our proposed model, which is a natural extension of the UN’s current

practices. We then discuss various metrics for assessing the predictive power of our model

via cross-validation. In the next section, we present results of the cross-validation with an

illustrative example from Uzbekistan. Comparisons are then made with the recently updated

regional projections for South Asia by IIASA. Lastly, we present projections for Japan, the

leading country in overall life expectancy.

2 Data

Because life expectancy at birth is a summary indicator for all age-specific mortality rates,

the estimation of it for over 200 countries is an arduous task. Infant and child mortality

data collection and estimation is closely monitored by the international community1. Unfor-

tunately, this is not the case for adult mortality. According to the 2007 UN World Mortality

Report, since 1990, only 56% of 195 countries have ”reliable” or ”fairly reliable” vital statis-

tics for adult mortality. Thirty-five percent of countries have deficient or non-existent vital

registration systems but have alternative sources (e.g., household death from censuses, sur-

vivorship data) to estimate adult mortality which may not always be reliable. Lastly, 7% of

1see for example the Inter-agency Group for Child Mortality Estimation with members from the United
Nations Children’s Fund, World Health Organization, The World Bank and United Nations Population
Division
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countries are lacking recent data for the estimation of adult mortality completely. This dis-

parity in reliable data availability is not homogenous across populations. Of the 50 countries

in Asia, 56% have ”reliable” or ”fairly reliable” vital statistics, whereas 95% of Europe and

North America have reliable statistics. This number decreases dramatically in Africa where

only five of the 54 countries (9%) maintain ”reliable” or ”fairly reliable” vital statistics.

Because of the inequities in data reliability and availability, for this analysis of the projec-

tion of mortality, we used the life expectancy at birth time series from the World Population

Prospects 2006 Revision (WPP) produced by the United Nations Population Division (Na-

tions, 2007). WPP estimates are an expert culmination of the disparate data and method-

ological machinery available.

The HIV/AIDS epidemic major source of mortality in the last 20 years. As such, we

exclude countries with a generalized HIV/AIDS epidemic 2 as was denoted on UNAIDS fact

sheets. A country is defined as having a generalized epidemic when: (a) HIV is established

in the general population; (b) the epidemic could be sustained via sexual networking in

the general population independent of sub-populations at higher risk for infection; (c) HIV

prevalence is consistently over 1%. Table 1 lists the excluded countries.

3 Methodology

3.1 Model

Currently, the UN estimates life expectancy deterministically. The life-expectancy (lc,t+1)

for country, c, in the next quinquennial period, t+ 1, is estimated to be the life expectancy

in the current time period (lc,t) plus the expected gains in life expectancy (g(lc,t)). Observed

five-year gains in life expectancy for 157 countries from 1950 to 2000 are plotted in Figure

2Classification of countries with a generalized HIV/AIDS epidemic was based on HIV/AIDS fact sheets
published jointly by WHO, UNAID and UNICEF (2008).
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Table 1: Countries with a generalized HIV/AIDS epidemic as denoted by UNAIDS fact sheets and
2000-2005 prevalence rate (WPP 2006).

Country Prev Rate Country Prev Rate
Niger 1.1 Guinea-Bissau 3.8
Guinea 1.5 Nigeria 3.9
Sierra Leone 1.6 Congo 5.3
Mali 1.7 Cameroon 5.4
Benin 1.8 Kenya 6
Ethiopia 1.9 Uganda 6.4
Burkina Faso 2 United Rep. of Tanzania 6.4
Ghana 2.3 Cte d’Ivoire 7
Eritrea 2.4 Gabon 7.8
Gambia 2.4 Central African Rep. 10.7
Rwanda 3 Malawi 14
Djibouti 3.1 Mozambique 16.1
Equatorial Guinea 3.2 Zambia 16.9
Togo 3.2 South Africa 18.7
Dem. Rep. of the Congo 3.2 Namibia 19.3
Burundi 3.2 Zimbabwe 20.1
Liberia 3.4 Lesotho 23.2
Chad 3.5 Botswana 26.5
Angola 3.7 Swaziland 34.2

3.1. This figure highlights the non-constant rate of change in life expectancy. To capture

this, the UN has developed a model that represents the decline in mortality by fitting a

double-logistic function of current life expectancy.

The double-logistic function has six parameters, as is illustrated in Figure 3.1, four iden-

tifying intervals of life expectancy when the rate of life expectancy gains is changing, one

describing the approximate maximum gain in life expectancy, and the last describing the

asymptotic rate of gains as life expectancy increases (Meyer, 1994). For each country, a UN

analyst chooses one of five prescribed choices of the six parameters by assessing the pace of

mortality decline in the recent to medium-term past (Nations, 2009). In the UN approach,

a constant rate is set once the gains in life expectancy have reached a preset low level. Al-
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Figure 1: Each point represents the observed five-year gain in life expectancy within a country. The
green line is a locally-weighted polynomial regression (lowess) of the observations. UN estimates
for 157 countries from 1950 to 2000 are included in this figure (n=1256). (Note, 24 observations
(1.9%) are outside the range of the plot and not depicted, but where include in the local regression.)
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Figure 2: Illustration of the double-logistic parameters (blue).

though there is no evidence of an upper limit to life expectancy (Oeppen & Vaupel, 2002),

setting future life expectancy gains to be constant assumes life expectancy in all countries

will continue to rise at the same rate and not stay the same or decline.

The double-logistic function is the sum of two 3-parameter logistic growth pulses. De-

mographic transition theory suggests slow increase life expectancy then significant increases

in life expectancy as a country enters the demographic transition. This increase in life

expectancy is not constant over time. Rapid gains in life expectancy are a result of improve-

ments in infant and child mortality. However, gains slow as mortality improvements shift to

older ages.

To summarize, the UN method to estimate the life expectancy in the next time period

is given by

lc,t+1 = lc,t + g(yc,t). (1)

The expected 5-year gains in life expectancy is a function of the current level of life ex-

pectancy as determined by a UN analyst chosen parameterization of the double-logistic
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function

g(lc,t|θ(UN)) =
θ

(UN)
5

1 + exp(− log(92)

θ
(UN)
2

(lct −m(UN)
1 ))

+
θ

(UN)
6 − θ(UN)

5

1 + exp(− log(92)

θ
(UN)
4

(lct −m(UN)
2 ))

θ(UN) ∈ (θVery Slow,θSlow,θMedium,θFast,θVery Fast)

θ(UN) = (θ
(UN)
1 , θ

(UN)
2 , θ

(UN)
3 , θ

(UN)
4 , θ

(UN)
5 , θ

(UN)
6 )

where,

m
(UN)
1 = θ

(UN)
1 + 0.5θ

(UN)
2

m
(UN)
2 = θ

(UN)
1 + θ

(UN)
2 + θ

(UN)
3 + 0.5θ

(UN)
4 .

A natural extension to the account for the uncertainty in the UN methodology would be

to model the underlying generating mechanism as a random walk with drift where the drift

term is given by the double-logistic function. This means that life expectancy in the next

time period is equal to the UN estimate plus a random perturbation (δc,t+1):

lc,t+1 = lc,t + g(lc,t|θ(UN)) + δc,t+1. (2)

This simple extension accounts for uncertainty around the UN analyst chosen parametric

double-logistic function, yet, it does not account for the uncertainty associated with the

chosen set of double-logistic parameters. We use the UN expert knowledge by assuming

the rate of gains in life expectancy follow this flexible double-logistic function. However,

we do not assume that countries will follow a specific double-logistic function with preset

parameters. We propose modeling the drift term as a non-linear Bayesian hierarchical model,

which allows country-specific double-logistic parameters to be fit and pool information about

the rate of gains across countries. A Bayesian-based approach allows the estimation of
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country-specific probabilistic distributions of gains in life expectancy. Our model is given by

lc,t+1 = lc,t + g(lc,t|θ(c)) + δc,t+1 (3)

g(lc,t|θ(c)) = Double-Logistic function with parameters θc

θ(c)|Σ ∼ NormalTrunc(θ,Σ)

Σ = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4, σ

2
5, σ

2
6).

We pool information about the rates of gains across countries by assuming each set of

country-specific double-logistic parameters are randomly sampled from a common normal

distribution around a set of world double-logistic parameters. The normal distribution is

truncated such that all of the double-logistic parameters are positive. It is easily evident

why the first five parameters should be positive since they are intervals of life expectancy

and the maximum gains, respectively. By assuming the sixth parameter, z, is non-negative,

we are assuming that on average, life expectancy will continue to increase. This is consistent

with the findings of Oeppen & Vaupel (2002) where they determined there was no indication

that life expectancy would stop increasing.

Figure 3.1 shows the standard deviation of the residuals when we assume homoskedas-

ticity around the double-logistic function. As is evident from the locally smoothed, Loess,

regression line of these statistics, the observations are not scattered around the double-

logistic function in an equal pattern. Instead, the distribution around the function decreases

as life expectancy increases. Our model addresses this heteroscedasticity by assuming the

standard deviation of the random perturbations are proportional (κ) to the loess fit of life

expectancy versus the standard deviation of residuals of all countries (r(lc,t)). We model the
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Figure 3: The standard deviation of residuals across life expectancy with locally weighted regression
fit.

stochastic error term around the double-logistic function as

δct ∼iid N(0, (κ× r(lc,t−1))
2) (4)

3.2 Parameter estimation

To carry out a Bayesian analysis, we specify the probabilistic distributions for all parameters

in the model as follows:

σ2
δ ∼ Inverse-Gamma(

νδ
2
,
νδω

2
δ

2
)

θ|Σ ∼ NormalTrunc(θ0, αΣ)

σ2
θ,i ∼ Inverse-Gamma(

νθ,i
2
,
νθ,iω

2
θ,i

2
)

κ ∼ Uniform(a, b).
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Prior specification of the world-level parameters were assumed to be sampled from a

truncated normal density with variance parameters independently sampled from an inverse-

gamma distribution. Empirical Bayes method of hyper-parameter specification with priors

having the weight of one observation within one country (nuδ, α, νθ,i = 1). For the stochastic

proportionality constant, κ, a diffuse prior was specified uniformally from zero to ten.

Models were run using the package R2WinBUGS (2005) in R 2.7 (2009) to access Win-

Bugs 1.4 (2000). The posterior distribution of the parameter was sampled via slice sampling

Markov Chain Monte Carlo (MCMC) methods. (See REF for information about MCMC

methods.) For each run of the model, three chains of length 10,000 were run with a burn-in

of 1,000 with a thinning factor of 2 resulting in three simultaneous chains of length 4,500.

Standard diagnostic, which are available in the R package coda (Plummer et al.), all suggest

the chains were well mixed and had converged.

4 Model Validation - Assessing the predictive ability

To assess the validity of our forecasts, we evaluated the calibration and sharpness of our

predictions (see Gneiting & Raftery (2007) for full discussion of diagnostics). Calibration

compares our predictive distributions with the actual observations, while sharpness refers

to the concentration of predictive distribution. The ideal projections would be the sharpest

(i.e., narrowest prediction intervals) without sacrificing calibration (i.e., accurate predic-

tions). Cross-validation was performed by fitting our model to data from 1950 through 1995

(n=1,413) and forecasting life expectancy for males from 1995 to 2005, resulting in 314 cross

validation points.

When assessing the predictive ability of our model, we examined numerical measures of

calibration via the coverage of our prediction intervals, root mean squared error (rMSE),

mean absolute error (MAE) and the mean standardized absolute predictive error (SAPE).
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Standardized absolute predictive errors (act) are defined for country, c, at time period, t, as:

act =

√
2

π
∗ |lct − l̂ct|
σ̂pred,ct

.

That is, the SAPE is the absolute difference between the actual observed life expectancy

(lct) and our median forecast (l̂ct) standardized by the standard deviation of our predictive

distribution. When the model is correctly specified, the expected mean SAPE value is equal

to one.

These numerical metrics are presented in Table 2. Overall, our model was well calibrated

with our 95% prediction intervals capturing the actual observations 95% of the time. The

nominal coverage of our 80% prediction intervals was 84%. The mean standardized absolute

error (SAPE) was 0.96, which is quite close to the theoretical mean of 1. The mean absolute

error (MAE) of our median predictions was 1.00 year. That is, over 10 years of predictions,

our “best guess”, on average, was within 1 year of the actual observation

Table 2: Summary measures for 10 year out-of-sample cross-validation.

Summary statistics
Root mean square error (MSE) 1.72
Std absolute prediction error (SAPE) 0.96
Mean absolute error (MAE) 1.00

Prediction Intervals
Nominal Actual Mean length

95% 95% ±2.6
90% 92% ±2.2
80% 84% ±1.7

Gneiting & Raftery (2007), propose an assessment of probabilistic performance be based

on maximizing sharpness subject to calibration. That is, calibration being equal, the more

concentrated the predictive distribution, the better. Because the UN does not, we were
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unable to compare the sharpness and calibration of our results with theirs. However, we

evaluated the sharpness of our projections by examining the distribution of prediction interval

lengths. Figure 4 contains boxplots of half the lengths of the 80% prediction interval for

the two projected quinquennial periods overall and broken down by (UN-defined) region.

Excluding outliers, for the 1995-2000 time period, the prediction interval half-lengths range

from 0.8 to 1.9 years with an average length of 1.4 years. For the next quinquennial period,

2000-2005, the interval half-lengths increase to a range of 1.1 to 2.7 years with an average

half-length of 2 years. Both life expectancy at birth and prediction interval lengths vary

by region. From 1995 to 2005, Africa had the lowest life expectancy of 59.8 years with and

average interval half-length of 2 years. With an average life expectancy of 73.5 years and

interval half-length of 1.3 years, North America had both the highest life expectancy and the

most narrow prediction intervals. Looking across regions, we can see that as life expectancy

increases, the prediction intervals are more narrow, indicating there is less variability in life

expectancy as it increases.

4.1 Country-specific projections for Uzbekistan (Out of sample)

Figure 4.1 is a plot of estimated and projected life expectancy for Uzbekistan. The actual

observed UN WPP 2006 time-series is indicated by solid black circles with projections in

dark blue. The UN WPP 1996 projections for 1995-2050 are represented by the solid light

blue line and ours are in red with the 80%PI represented with dashed lines. This allows

us to rewind time to see how accurate our projections and the UN WPP 1996 projections

would have been.

Male life expectancy in Uzbekistan was increasing from 52.5 years in 1950 to 64 years

in 1990. However, in the next quinquennial, 1990-1995, male life expectancy in Uzbekistan

decreased by 1 year to 63 years. Both WPP 1996 and our median projections predict a
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Figure 4: Boxplots of half the 80% prediction interval lengths from the out-of-sample projections
of life expectancy from 1995-2005.
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continuous increase in life expectancy, however, ours increase at a more conservative rate.

As is evident in Figure 4.1, our 80% prediction intervals capture the “true” (Nations, 2007)

estimates of life expectancy from 1995 to 2005. For the first time period, from 1995-2000, the

upper bound of our 80% prediction interval was 66.1 years, which is about half a year higher

than WPP 1996 (Nations, 2007) estimate of 64.5. Yet, the lower bound of our 80% prediction

interval, 61.9 years, actually predicts that life expectancy may continue to decrease. In fact,

our prediction interval allows for the possibility of life expectancy not increasing for the

subsequent 25 years, which highlights the uncertainty of the previous time-series.
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Figure 5: Life expectancy for Uzbekistan with our out-of-sample projections (and 80%PI) starting
in 1995 (red), UN WPP 1996 (light blue) and UN WPP 2006 projections (dark blue).
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4.2 Regional projections

As previously mentioned, researchers at the International Institute for Applied Systems Anal-

ysis (IIASA) (Lutz et al. 2004; Lutz, et al, 1996 1997, 2001) produced regional probabilistic

prediction intervals for life expectancy using Delphi-type methods. A range of experts were

asked to give 90% prediction intervals for future life expectancy in each of 13 specified re-

gions. Linear paths were then drawn from a normal distribution to produce probabilistic

predictive distributions. A strength of this method is that it uses demographic knowledge

as an input whereas traditional time-series methods only rely on past trends.

Country-specific projections allow regional projections to be made regardless of how

the region is defined. To compare our projections with those of IIASA, we aggregated

UN estimates and projections and our projections to be proportional to the regional male

populations in 2003. Note, we assume the life expectancy projections are independent. 3

Positive intra-regional correlations may increase the uncertainty in our regional projections.

As defined by IIASA, the countries, male population and weight value for South Asia are

in Table 3. Figure 4.2, includes projections of life expectancy for the South Asian region.

The 2007 IIASA projections available on their website (Lutz, Sanderson & Scherbov, Lutz

et al.) are depicted. The decennial intervals lengths, in Figure 4.2, indicate the IIASA

intervals are 32.5% more narrow than our projections in 2008. However, our projections

begin 4 years earlier in 2003, the mid-year of the 2000-2005 quinquennial. Regardless of this

discrepancy, for subsequent projections, our intervals are more sharp, ranging from 12-74%

more narrow than those of IIASA.

3See Alho (2008) for a discussion on aggregation across countries in the European Union.
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Table 3: Male Population and relative proportion of countries within South Asian (IIASA-defined).

South Asia
Country Male Population (1,000s) Pct of Region Pop (%)
India 522.2 75.1
Pakistan 72.8 10.48
Bangladesh 68.8 9.89
Nepal 11.6 1.67
Afghanistan 10.2 1.47
Sri Lanka 9.3 1.33
Bhutan 0.3 0.04
Maldives 0.1 0.02

4.3 Projecting leading countries

One of the difficulties with projecting mortality is accurately projecting the country with the

lowest mortality. Historically, many assumed there must be a “ceiling” to life expectancy for

humans (REFS). However, past estimates of the “maximum life expectancy” have continually

been surpassed (Oeppen and Vauppel, 2002, OTHER REFS). In fact, Oeppen & Vaupel

(2002) presented strong evidence that the worlds highest, or “best practices”, life expectancy

at birth has increased linearly across time and show no signs of leveling off. They estimated

that the “best practices” life expectancy for males has increased at a rate of 0.222 per year.

Although Japan does not have the highest male life expectancy (that title currently

belongs to Iceland), it is the country with the highest overall life expectancy and has been

for many years. Figure 4.3 is a plot of male life expectancy in Japan. The green line is what

the trajectory would be if male life expectancy in Japan increased at the “best practices“

rate. Our median projection, indicated as a red solid line, are strikingly consistent with the

“best practices” trajectory.

Recently, both the UN and the Japanese official projections made by the National In-

stitute of Population and Social Security Research (IPSS) have extended the traditional
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Lee-Carter method to better estimate mortality at higher ages. The original Lee-Carter

model estimates age-specific mortality rates for five year intervals with the last age range

aggregating those 85 and older. IPSS and UN now use the shifting logistic model (Bon-

gaarts, 2005) to account for continued increase in life expectancy in Japan. IPSS projections

(low/medium/high rates of mortality decline variants) (Kaneko et al., 2008) are included

in Figure 4.3 in light blue. The IPSS are more conservative than both our and the ”best

practices“ projections, yet still within our prediction interval.

5 Discussion

Much research has been done on the forecasting of mortality (see Booth, 2006 and OTHERS

for a detailed review). However, efforts have focused on developed countries where reliable

age-specific data are available. As previously discussed, the most ubiquitous time-series

method for forecasting age-specific mortality rates is the Lee-Carter method and its various

parallels (e.g., (Renshaw & Haberman, 2006)), generalizations (e.g., de Jong & Tickle, 2006;

Hyndman & Ullah, 2007; Perosi 2006) and extensions (e.g., Li & Lee, 2005; Li et al., 2004).

There have been other time-series methods to estimate and project age-specific mortality

rates, including the Heligman-Pollard model (Heligman & Pollard, 1980) and Brass methods

(Brass, 1971). The Heligman-Pollard model is an eight-parameter model with three parts

describing mortality at different age ranges, childhood, young adult, and late-life. The Brass

relational method fits a two-parameter model where the age-specific mortality rates are

assumed to be a linear function of a user-chosen model life table on a logit scale. Although

both models have been effective in fitting mortality data (e.g., Keyfitz, 1991; Hartmann,

1987), difficulties may arise in projecting the parameters (Keyfitz, 1981).

In addition to time-series approaches, there are two other main approaches to developing

predictive distributions of projections (Lee, 1998; National Research Council 2000). As was
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previously discussed, expert-based probabilistic projections have been produced by Lutz and

colleagues at the IIASA (1998). However, this method does not explicitly rely on the use of

available data, instead relying on a collection of diverse experts and their ability to specify

specific probabilistic bounds, which may or may not be accurate (Alho, 2005). The other

alternative to time-series methods is ex-post analysis of previous projections (Keyfitz, 1981;

Stoto, 1983; Smith & Sincich, 1990). In this method, previous forecast errors are used to

create probabilistic errors on future projections.

The use of Bayesian framework . Girosi & King (2008) recently proposed a Bayesian

method which incorporates covariates in a linear regression model. However, their approach

depends on additional data which may not be reliable or even available in many countries.

Perosi (2006) proposed a Bayesian approach to the Lee-Carter approach by accounting for

the uncertainty in the age parameters as well as the time parameter usually forecasted.

Czado, et al (2005) also present a Bayesian approach to the Poisson log-bilinear formulation

of the Lee-Carter model. While the latter two approaches account for uncertainty in the

Lee-Carter model, the generalization of these methods to all countries are again hindered by

the data availability of age-specific mortality rates.

5.1 Future Research

For this initial analysis, we restricted the countries to those without generalized HIV/AIDS

epidemics. For a secondary analysis, we loosened the exclusion rule and fitted our model to

all countries with a WPP 2000-2005 HIV/AIDS prevalence rate of less than 4% (n=178).

The 10-year cross-validation of these countries indicate the model maintains its predictive

ability with 80% prediction intervals accurately predicting life expectancy 82% of the time.

This continued calibration does not decrease the precision of the model. The mean absolute

error of 1.2 and average 80% PI half-length of 1.8 years, which are only slightly higher
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than the results (1.0 and 1.7, respectively) from the non-generalized epidemics analysis.

Further research is needed to generalize our model for countries with a generalized HIV/AIDS

epidemic while properly accounting for the uncertainty in AIDS mortality, but our secondary

analysis indicates generalization would be possible.

The model we presented here assumed that the random perturbations in gains in life

expectancy are independent across countries. Previous work (Alho, 2008) has suggested that

cross-country correlations are non-zero and should be modeled as such. Our approach can

be adapted to modeling the perturbations, δc,t, as samples from a multivariate distribution

where correlations within a region are also estimated. However, this approach would require

the a priori definition of each region and a proposed covariance structure (e.g., spatial

correlations, correlations based on population size). Our model can also be further adapted

to be more complex ARIMA model.

Further research is needed to apply this model to life expectancy at birth among women

while ensuring trajectories be gender do not diverge or cross. This could potentially be done

by modeling the two genders independently, as is recommended in the Lee-Carter method

(Lee & Carter, 1992), and introducing a new parameter ensuring stochastic trajectories do

not cross or diverge. The model could also be made more complex by allowing the double-

logistic parameters to be correlated across genders

In developed nations, age specific mortality rates can accurately be estimated by vital

registration and official censuses. However, this is not the case in a large percentage of

the world where estimates are based on infrequent census and demographic surveys. The

Millennium Development Goals to reduce child mortality has improved data collection and

estimation of infant and child mortality. But, the collection of adult mortality data is still

sparse. Because of the inequities in data, it is important for future mortality projections to

incorporate all sources of uncertainty using reproducible methodology for all nations.
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6 List of Notation

Table 4: Model Notation

c country, c ∈ 1, 2, . . . , 157
g(lct) double-logistic function modeling the expected 5-year gains in life ex-

pectancy for country c at time period t
lc,t life expectancy at birth in country c during time period t
r(lct) function accounting for heteroscedasticity in perturbations
t quinquennial time period
δct random perturbations
θ vector of world-level double-logistic parameters

(θ1i, θ2i, θ3i, θ4i, θ5i, θ6i)
θc vector of country-specific double-logistic parameters
κ proportionality constant of perturbations
Σ Variance-Covariance matrix of the world-level double-logistic parame-

ters

24



References

Alho, J. (2008). Aggregation across countries in stochastic population forecasts. International
Journal of Forecasting, 24 (3), 343–353.

Alho, J. M. (2005). Statistical demography and forecasting. New York: Springer.

Bell, W. (1997). Comparing and assessing time series methods for forecasting age-specific
fertility and mortality rates. Journal of Official Statistics, 13, 279–202.

Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods.
Demography, 42 (1), 23–49.

Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal
of Forecasting, 22 (3), 547–581.

Booth, H., Tickle, L., & Smith, L. (2005). Evaluation of the variants of the leecarter method
of forecasting mortality: A multicountry comparison. New Zealand Population Review,
Special Issue on Stochastic Population Projections, 31 (13-37).

Brass, W. (1971). Biological aspects of demography, chapter On the scale of mortality, (pp.
69 110). London: Taylor and Francis.

de Jong, P. & Tickle, L. (2006). Extending leecarter mortality forecasting. Mathematical
Population Studies, 13, 1–18.

Girosi, F. & King, G. (2008). Demographic forecasting. Princeton, NJ: Princeton University
Press.

Gneiting, T., B. F. & Raftery, A. (2007). Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society, Series B, 69, 243–268.

Hartmann, M. (1987). Past and recent attempts to model mortality at all ages. Journal of
Official Statistics, 3, 19–36.

Heligman, L. & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute
of Actuaries, 107, 49–80.

Hyndman, R. J. & Ullah, S. (2007). Robust forecasting of mortality and fertility rates: A
functional data approach. Computational Statistics and Data Analysis, 51 (10), 4942–4956.

Kaneko, R., Ishikawa, A., Ishii, F., Sasai, T., Iwasawa, M., Mita, F., & Moriizumi, R. (2008).
Population projections for japan: 2006-2055 outline of results, methods, and assumptions.
The Japanese Journal of Population, 6 (1), 76–114.

Keyfitz, N. (1981). The limits of population forecasting. Population and Development Review,
7, 579593.

25



Keyfitz, N. (1991). Experiments in the projection of mortality. Canadian Studies in Popu-
lation, 18, 1–17.

Lee, R. D. (1998). Probabilistic approaches to population forecasting. Population and
Development Review, 24, 156–190.

Lee, R. D. & Carter, L. R. (1992). Modeling and forecasting u. s. mortality. Journal of the
American Statistical Association, 87 (419), 659–671.

Li, N. & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An
extension of the lee-carter method. Demography, 42 (3), 575–594.

Li, N., Lee, R., & Tuljapurkar, S. (2004). Using the leecarter method to forecast mortality
for populations with limited data. International Statistical Review, 72, 19–36.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs v1.4.3 – a bayesian
modelling framework: concepts, structure, and extensibility. Statistics and Computing,
10, 325–337.

Lutz, W., Sanderson, W. C., & Scherbov, S. Iiasas 2007 probabilistic world population
projections, iiasa world population program online data base of results.

Lutz, W., Sanderson, W. C., & Scherbov, S. (2004). The end of world population growth in the
21st century: New challenges for human capital formation and sustainable development.
Sterling, VA: Earthscan.

Meyer, P. (1994). Bi-logistic growth. Technological Forecasting and Social Change, 47, 89–
102.

Nations, U. (2007). World population prospects: The 2006 Revision. New York, NY: United
Nations.

Nations, U. (2009). World population prospects: The 2008 Revision. New York, NY: United
Nations.

Oeppen, J. & Vaupel, J. (2002). Broken limits to life expectancy. Science, 296, 1029–1031.

Plummer, M., Best, N., Cowles, K., & Vines, K. coda: Output analysis and diagnostics for
mcmc.

R Development Core Team (2009). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Renshaw, A. & Haberman, S. (2006). A cohort-based extension to the lee-carter model for
mortality reduction factors. Insurance: Mathematics and Economics, 38, 556–570.

Smith, S. K. & Sincich, T. (1990). On the relationship between length of base period and
population forecast errors. Journal of the American Statistical Association, 85, 367–375.

26



Stoto, M. A. (1983). The accuracy of population projections. Journal of the American
Statistical Association, 78, 13–20.

Sturtz, S., Ligges, U., & Gelman, A. (2005). R2winbugs: a package for running winbugs
from r. Journal of Statistical Software.

27


