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Abstract 
 
Identifiability of the parameters for a Mixture of Bivariate 
Densities (MBD) in the form  
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is considered. Particular attention is given to 1 2θ θ≠  (i.e. 
marginal of x is a nondegenerate mixture). Characterzati- 
ons of identifiability that includes extensions of Hennig 
(2000), Hunter (2007) and Gage (2004) models are given. 
These identified models are applied to characterize latent 
subpopulations related to infant mortality and survival in 
several NCHS linked Birth/Death data sets. 
 
 
1. Introduction 
 
Mixture models are widely applied due to their ease of 
interpretation. Researchers often interpret the parameters 
of the model by viewing the fitted components as distinct 
clusters that form heterogeneous subpopulations within 
the population. 
Indeed, populations are unlikely to be homogeneous due 
to unobservable genetic, environmental and/or social 
factors. Factors discussed in the literature are age, gender, 
species, geographical origin and cohort status. 
(McLachlan and Peel, 1996). 
 
 

2. The MBD 
 

Mixture of Bivariate Densities is given by the joint 
density: 

1 1 2 2( , ; , , ) ( , ; , ) (1 ) ( , ; , )f x y f x y f x yφ θ π π φ θ π φ θ= + −  
where the distribution parameters 1 1 2 2( , ) and ( , )θ φ θ φ are 
the associated parameters characterizing the two compo-
nent densities with weights   and 1π π−  respectively. 
Taking x as a covariate and y as the dependent variable, 
the MBD format used here allows the parameters to be 
separated as follows,  
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where ( , )x y ∈�  are observables, 1 2( , )θ θ θ=  denotes 
the parameters of the components associated with cova- 
riate x (the  marginal of x).  The parameters associated 
with the variable y are  

1 1 1 2 2 2( ( , ), ( , ))φ φ β α φ β α= = =  where 1 2( , )β β β=  
denotes the regression  coefficients for y in the respective 
components and 1 2( , )α α α=  are other distributional 
parameters. Let ( , , )Tω π θ φ= ∈Ω   denote the vector of 
all the unknown parameters in the MBD. The estimation 
and the consistency of the parameters of mixture models 
such as the one described above are known to be 
problematic. Estimation procedures may not be well-
behaved if a model is not identifiable.  
 
2.1 Identifiability  
 
The problem of identifiability is basic to statistical 
methods and data analysis. In the past four decades 
various attempts have been made to build on the 
identifiability for mixtures which goes back to the papers 
by Teicher. (Teicher 1961, 1963).Various treatments of 
identifiability in the context of finite mixture models with 
specified distributions have been considered. (Yakowitz 
and Spragins 1968, Blischke 1962, Ord 1972, Robbins 
and Pitman, 1949, Kent, 1983, Gerard Gory, 1998, 
Holzman et.al, 2006, Jiang and Tanner, 1999). 
 
2.1.1 Definition 
 
Let { }( , ; ( , , ), )f x y ω π θ φ ω= ∈Ω be a MBD parametric 
family, then it is said to be identifiable for ω∈Ω  if for 
all allowed x and y  
  ( , ; ) ( , ; )f x y f x yω ω≡ %  implies up to labelling that 

π π= % , θ θ= % andφ φ= % . 
Estimation procedures for the MBD may have no unique 
parameters to estimate if the model is not identifiable. To 
achieve identifiability one may need to impose 
restrictions which may or may not have natural 
interpretations.  
 
2.1.2 Natural restrictions 
 
Before considering the Mixture of Bivariate Densities 
(MBD) in detail we make the following assumptions  

i) 1 1 2 2( , ) ( , )θ φ θ φ≠  



ii) 1( 1)
2

π< < , π is the mixing proportion 

The first assumption is to make sure that there are two 
unique components.  The second assumption resolves the 
issue of non uniqueness of labelling.  
As cautioned by McLachlan and Peel (1996), under these 
natural restrictions, the logistic regression mixture model 
may not be identifiable without additional “unrealistic” 
restrictions on the covariates. Conditions for which the 
parameters of the MBD with a logistic regression 
submodel identified are given in the main proposition.  
The above MBD can be expressed in different forms. 
Though x and y are observable, the parameters and the 
cluster memberships are not. 
 
2.2 Case 1: 1 2θ θ=  (Homogeneous x marginal) 
 
If we assume that 1 2θ θ θ= = %  in the above MBD model 
as expressed in equation (1), the distribution ( ; )f x θ  in 
the MBD factors out and yields a Clusterwise Regressions 
model Hennig (2000): 
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Thus the latent clusters are characterized by a mixture of y 
conditional densities with corresponding different mixture 
relations. For example, the mixture of conditional 
densities 1 2( , ) ( ; ) (1 ) ( ; )yf y x f y x f y xφ π φ π φ= + − leads 
to other mixtures of interest such as mixture of means 
(regressions) and possibly of variances. For each cluster it 
is often assumed that the means are linear regressions 
with distinct parameters  

1 1 1 2 2 2( ( , ), ( , ))φ φ β α φ β α= = = defining distinct clusters.  
More particularly: 
 
Theorem 1  
 If 1 2θ θ=  in (1) then (i) 

1 2( , ; , , ) ( ( ; ) (1 ) ( ; )) ( ; )f x y f y x f y x f xφ θ π π φ π φ θ= + −    

(ii) 1 2( , ) ( ; ) (1 ) ( ; )f y x f y x f y xφ π φ π φ= + −  is a 
mixture of conditional densities (mixing regressions).  
  (iii) 1 2( ) ( ) (1 ) ( )E y x x xπµ π µ= + −  

 (iv)  
1

2 2
2( ) ( ) (1 ) ( )V y x x xπσ π σ= + −  if and only if  

1 2( ) ( )    x x xµ µ= ∀ .  

2.3 Case 2:  1 2θ θ≠  (Nonhomogeneous x marginal) 
 

If 1 2θ θ≠   in the above equations then 1 2( ; ) ( ; )f x f xθ θ≠  
and we have two distinct x marginal densities set apart by 
the parameters 1θ  and 2θ . 
To better understand the nondegenerate mixture in this 
case we “sum out” the other variable y.  
Thus 1 2( ; ) ( ; ) (1 ) ( ; )f x f x f xθ π θ π θ= + −  
and the density ( ; )f x θ  determines the latent clusters. 
Unlike Hennig’s (2000) case the mixing proportion π  is 
determined by the marginal of x. The parameters  

1 1 1 2 2 2( , ), ( , )θ µ σ θ µ σ= =  
of the covariate x define distinct clusters. As in the case of 
Gage’s model, the latent clusters are determined by the 
density/distribution of birth weight and/or gestational age.  
 

3. Identifiability of the Models 
 
The main objective is to explore the Identifiability of 
MBD as expressed in several special forms. The next step 
is to determine when an identifiable MBD is still 
identifiable for parameters associated with exogenous 
variables introduced as covariates for the MBD 
parameters. These exogenous variables may be discrete or 
continuous. 
As pointed out earlier, estimation of parameters of models 
such as MBD is only meaningful if the parameters 

,  and π θ φ  are uniquely determined. There has been 
extensive work done on the identifiability of mixture 
models pertaining to latency. As pointed out by Hennig 
(1996, 2000) and Hunter (2007), there are still no clear or 
simple necessary and sufficient conditions for the 
identifiability of finite mixtures. For instance, Hennig 
investigated the identifiability of the parameters of 
models for data generated by different linear regression 
distributions with Gaussian errors. He concluded that such 
models are identifiable under additional restrictions. 
Hunter et. al investigated the  Identifiability of finite 
symmetric mixtures from a family of shifts. They noted 
that beyond certain numbers of component mixtures the 
identifiability of their models becomes complicated. We 
give a general proposition and provide proof (see 
appendix) that shows when the two general forms of a 
MBD are identified.  
 
3.1 Definition 
 
The distribution function f is said to be Two-mixing 

identified for 1,
2

π π >%  iff 
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The identifiability of several families of functions has 
already been established. For instance, the mixtures of 
Gamma, Poisson and binomial by Jiang and Tanner 



(1999). Ahmad (1998) also proved the identifiability of 
the Weibull, Lognormal, chi, Pareto, and power functions. 
With this we proceed with the general proposition for the 
bivariate mixtures expressed in equation (1). 
 
3.2 General Statement 
 
Theorem 2 
Assuming:  
 (i)  ( ; ) f x θ determines  θ  
(ii) ( ; ) ( ; ( ( ; ), ))f y x g y h xφ η β α= = where ( ; )h x β  
determines β over the support of  ( ; ) f x θ Then MBD 

1 1 2 2

( , ; , , ( , ))
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f x y
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π θ φ β α
π φ θ π φ θ

= =

+ −
     

is identified if:  
(A)  g is two-mixing  or 
(B) g ~ Bernoulli ( ( ; ))h x β  is not a constant on support of 
 ( ; )f x θ and  ( ; )f x θ  is two mixing. 
 
Example:  
In the case where the y observations are Bernoulli (g ~ 
Bernoulli ( ( ; ))h x β ), we have 

(1) ( 2 )
1 2( 1 ) ( ; ) (1 ) ( ; )P Y x P x P xπ β π β= = + − .  

For f  two mixing and  
( )( ; ) ( ; )

1

i i

i i

x
i

i x

eh x P x
e

α β

α ββ β
+

+= =
+

; (1, 2),i = the 

support of  ( ; )f x θ has to contain at least four points for 
the model to be identified. 
 
A special case of the above proposition is the symmetric 
mixtures considered by Hunter et.al (2007). Notice that 
for g, the distribution function  

( ; ) ( ) f y x a g y a= − , a∈ � can be written as   

( ; ) ( ( ; )) f y x g y h xβ β= − where ( ; )h x β  is a function of 
x in place of a shift parameter a.  Common forms for 

( ; )h x β are: 

2( )      ( )    ( )      ( ) 
1
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a bx
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ei a bx ii a bx cx iii e iv
e

+
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3.3 MBD with exogenous covariates  
 
As questioned earlier, would the MBD still be identifiable 
if we introduce  exogenous variables (z) in equation (1) as 
polynomial functions of the parameters of the models. For 
example would the Gage (2004) model with covariate x 
(birth weight) still be identifiable if discrete or continuous 
variables such as smoking, educational level and maternal 
age are covariates for the parameters  , , . π φ θ    

For example, if 1 2θ θ≠ and the assumptions of Theorem 2 
holds for each z, then ( ), (z), (z) zπ φ θ are identified and 
usually what is left is to see if say; 
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In this case, since every polynomial of the nth degree with 
real coefficients has precisely n zeros (fundamental 
theorem of algebra) ,  and γ τ α are determined if z has at 
least n distinct values. 

4. Application 

4.1 Data and Method.  

The dataset used for illustrations and analyses of the 
proposed models in this study are obtained from the 
national linked birth death files for the birth cohort born 
in 2001. It consists of all non-Hispanic African and 
European American singleton births. Cases with missing 
birth weight or gender were excluded 

Let T denote the infant survival time (days) and x be their 
Birth weight .We are particularly interested in modeling 
and determining the association/ relationship between the 
survival time and the covariate x. This paper focuses on 
infant survival time within the latent subpopulations and 
the significant effects of birth weight on infant survival 
within a subpopulation. In addition we look at the 
mortality within each subpopulation over time. 

4.1.1 MBD with survival probability (MBD-Survival). 
For the joint model we use the form already discussed in 
case 2.  The mixture sub model ( ; )i if x θ  is given by two 
Gaussian densities which are commonly associated with 
birth weight. The conditional survival submodel 

( ; ( , ))i i if y x φ β α= is taken to be the Weibull 
distribution. The hazard function of the distribution is 
monotone increasing when the shape parameter α > 1, 
decreasing when α < 1 and constant when the α  = 1. 
The hazard function at time t for a given covariate x (birth 
weight) is modeled as ( ) ( ) exp( ( ))oh t x h t xν=  i.e. as a 



function of x where ( )oh t is called the baseline hazard 
function is assumed Weibull and ( )xν  is the linear 
predictor relating to the covariate x. The predictor could 
be generalized to include higher order polynomials. The 
MBD-survival is fitted in a single joint likelihood by 
minimising the negative log likelihood using the ms() 
minimiser in the S-PLUS library. Details of the fitting 
procedure are outlined in Gage (2004). 

To better understand the latent subpopulations, we adopt 
the usual convention of assigning the subpopulation with 
the larger proportion as subpopulation 1 (majority of 
births) (Gage 2004, McLachlan and Peel 2000). For 
simplicity, we will refer to this subpopulation as the 
primary subpopulation. The associated survival and 
mortality in this subpopulation are respectively referred to 
as primary survival and primary mortality. The 
subpopulation with the smaller proportion is called 
secondary subpopulation and the associated 
survival/mortality as secondary survival/mortality. 

 

Bias corrected confidence intervals for the parameter 
estimates are estimated with bootstraps .The 95 percentile 
confidence limits obtained indicated that all the parameter 
estimates are statistically significant. These bootstrap 
results are also compared to classical confidence intervals 
computed from the Hessian. 
 
 
4.2 Results 

Descriptive statistics of total births and infant death rate 
are presented in table 1. The results of the fitted model for 
non-Hispanic European and African Females populations 
are presented in table 2. The upper section of table 2 gives 
the estimates of the x marginal. About 9 per cent of 
infants in the African American female population are 
identified as being in the secondary subpopulation 
whereas the 90 percent appear to be in the primary 
subpopulation. For the European American female about 
6 percent are in the secondary and 94 percent appear in 
the primary subpopulation. Estimates show that the mean 
of the primary subpopulation is much larger than the 
mean of the secondary subpopulation in both populations. 
On the other hand the standard deviation of the secondary 

subpopulation is much larger than the primary 
subpopulation. A graphical comparison of specific birth 
weight total mortality through the year indicates that 
infant mortality is lower in the non-Hispanic European 
American within the normal range (3500g-4500g) 
compared to non-Hispanic African American female. 
However, it’s higher at weights less or equal to 2500g 
(Figure1). The mortality curves over time within a 
population shows that primary mortality is generally 
higher in comparison to secondary mortality in almost all 
birth weights (Figure 2). Birth weight specific hazard for 
the total population is fairly constant in each 
subpopulation at each birth weight after about 50 days. 
(Figure 3 A, B, C). A cross section of the mortality curve 
for the first day (Birth–Day mortality), the 28th day 
(neonatal) and 364th day (infant mortality) also suggest a 
fairly reasonable fit of our model. (Figure 3: D-H) 

4.3 Discussion 
  
The MBD can be used in any field or area where bivariate 
mixtures are prominent. The choice of distribution for the 
conditional submodels is open to the researcher’s interest. 
This article addresses the issues of identifiability of 
bivariate mixtures that occurs in practice and have 
established a general proposition with a comprehensive 
proof for the discussed cases. In this situation the 
parameters of all cases are uniquely determined and hence 
the parameter estimates are well behaved. It is also 
applicable in the special situations such as symmetric 
mixtures (Hunter (2007). The study demonstrated how 
these identified models can be applied to survival and 
mortality data. 
 
The conditional submodel distributions used for the 
subpopulations in this demonstration were assumed to be 
Weibull. However other lifetime distributions are also 
applicable. The Gage model of covariate defined mixtures 
of logistic regression is seen to be a submodel of MBD 
when t = 365. The fits of the more general MBD are seen 
to be consistent with those obtained by Gage. It gives a 
resolution of the phenomenon that at t = 365, lower birth 
weight specific infant mortalities among African 
Americans are smaller compared to European Americans 
despite their larger infant mortality  to all values of t. 
The overall birth age specific hazard suggests that the 
instantaneous risk of death of an infant within the first 
year of birth is fairly stable/ after approximately 50 days 
(i.e. remains substantially constant). However this 
constant risk is still higher for an infant within the 
primary subpopulation compared to the secondary 
subpopulation (Figure 3 A, B, C).   
 
 
 
 

Table1:Descriptive statistics for the populations

N.H European Am.  Female 1,015,923 3.42
N.H African Am. Female 251,684 7.12

N.H = Non-Hispanic
Am.= American

Birth Cohort Total Births Infant
 Death Rate 



 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4 Conclusions  
 
 
1. The study developed conditions for a bivariate mixture 
model that establish its identifiability. 
 
2. Hazard/mortality in the Secondary subpopulation at 
each birth weight is lower compared to the Primary 
subpopulation 
 
3. Birth weight specific hazard is fairly constant in each 
subpopulation at each birth weight after about 50 days. 
 
4. Lower Birthweight-specific infant mortalities for 
African Americans are smaller than European American 
infants despite their larger total infant mortality. 
 
 
 
. 
 
 

Table 2: Parameter estimates for the MBD-Survival model ( Weibull )
Weibull 

  Non Hispanic
 African American 

Female

Non Hispanic 
European
 American 

Female
Secondary Primary Secondary Primary

X  Marginal X Marginal
π 0.09 0.06
µg 2035.56 3169.586 2620.89 3380.08
σg 1296.23 455.0998 1116.37 456.45

Joint Model Joint Model
π 0.09 0.06
µg 2031.02 3169.40 2617.56 3379.97
σg 1298.14 455.48 1117.73 456.70
β1g 0.02 0.02 0.02 0.03
β2g 3.15E-06 3.21E-06 2.88E-06 3.45E-06
β0g -2.05 -8.10 -1.63 -10.85
αg 0.24 0.39 0.22 0.35
λg 111.86 1.26E+08 42.48953 7.15E+10

 g = (1 = Primary, 2 = Secondary)
π Mixing Proportion        Weibull Parameters

µ Mean  birth weight β0 Intercept α Shape 
σ standard deviation of birth weight βi Regression coefficients λ Scale 
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Figure 1 : Comparison of total Mortality within the 
Non-Hispanic African and European American Females 
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Appendix 

 We prove the general theorem. 
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(A) Suppose that 
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For each fixed x, this is a mixture of the conditionals 
 of g and so by g being 2-mixing identified:
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 Likewise for parameters indexed by 2.
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