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1 Introduction

Over the last century, we have witnessed major changes in the level of mortality in regions

all across the globe. This remarkable mortality decrease has also been characterized by

important changes in the age-at-death distribution, which inevitably led to substantial mod-

ifications in the shape of the survival curve over time. The measurement of transformations

in the survival curve quickly became a subject of great interest among researchers, as impli-

cations of these changes on every society’s health-care system and social programs, among

others, are profound.

In fact, demographers have suggested several indicators monitoring changes in the distribu-

tion of deaths. Recently, more than 20 existing indicators have been identified by Cheung

et al. (2005), some being methodologically and conceptually more advisable than others, as

previously discussed by Wilmoth and Horiuchi (1999) and Kannisto (2000, 2001).

Even though the debate regarding which indicator to favour still has to be sorted out, most

authors agree that countries usually go thru a compression of mortality regime during the

epidemiological transition. That is, deaths tend to concentrate into a shorter age interval

over time, as figure 1 shows for Japanese women between the 1950-54 and 1990-94 periods.
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Indeed, as time went by, the age-at-death distributions became less and less spread out.

Note that they have also progressively moved to higher ages. However, very recent studies
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Figure 1: Life table age-at-death distribution, Japanese women,1950-54 to 1990-94

Source: Human Mortality Database

suggest that an increase in the most frequent age at death might not always be accompanied

by such compression of mortality occurring above it (Cheung and Robine 2007, Cheung et

al. 2008). Instead, after a strong compression episode, the authors suggest that countries

may enter a new era where compression has ceased and the whole distribution of adult life

durations slides to higher ages.

Figure 2 indicates that Japanese women may have been experiencing this new era since 1995-

99 because from that point in time, their age-at-death distribution then moves to higher ages

while its shape remains unchanged. Note that this new era would be in accordance with what

Kannisto (1996) and Bongaarts (2005) have described as the shifting mortality scenario.

Furthermore, after analysing data from very low mortality countries such as Japan, France,

Italy and Switzerland (Cheung and Robine 2007, Cheung et al. 2008), the authors assert

that these data failed to demonstrate that human populations were approaching an upper

limit in terms of longevity. Nevertheless, this view is clearly not shared by all scientists

(Carnes and Olshansky 2007).

Following these recent advancements, the first objective of this paper is to present a flexible

nonparametric approach based on regression splines, specifically B -splines with penalties
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Figure 2: Life table age-at-death distribution, Japanese women,1950-54 to 1990-94

Source: Human Mortality Database

known as P -splines (Eilers and Marx 1996), that has the potential to improve our monitoring

of transformations in the survival curve over time.

Secondly, we wish to focus on the Canadian experience, for which there has been very few

studies on the topic. The work of Nagnur (1986) on Canada from 1921 to 1981, and the

study by Martel and Bourbeau (2003) on the province of Quebec between 1921 and 1999

essentially form the literature on the subject. Both of these papers assessed the presence of

a compression of mortality regime during the epidemiological transition. As a continuation,

we verify whether Canadians have reached this new era of shifting mortality demographers

have recently been speaking of. Precisely, Canadian provinces are first compared against

each other to reveal regional disparities, and the Canadian experience is then analysed in an

international perspective.

2 Lexis’s normal life durations

The German statistician Wilhelm Lexis is widely known among demographers for the very

useful Lexis diagram which allows a systematic location on one plane of the three classi-

cal demographic coordinates, namely the age, period and cohort. However, another great

contribution following his work on the normal life durations (Lexis 1878) remained largely
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ignored by the scientific community during the twentieth century (Véron et al. 2003). In

2001, Kannisto, followed by other authors (Cheung et al. 2005, Cheung and Robine 2007,

Cheung et al. 2008, Canudas-Romo 2008), demonstrated the utility of Lexis’s normal life

durations concept to measure the transformation of the survival curve ever since the very

first stages of the epidemiological transition.

According to Lexis (see Figure 3), the modal age at death corresponds to the most central

and natural characteristic of human longevity. Deaths occurring at this age and above can

then be seen as “normal deaths”. Furthermore, by symmetry of distribution falling above

the modal age at death, the left hand side of the normal life duration distribution can be

obtained. This allows disentangling infant and premature deaths from those referred as

normal deaths by Lexis.

Figure 3: Normal life durations concept introduced by Lexis in 1878

Source: Lexis (1878)

Inspired by the work of Lexis (1878) on normal life durations, Kannisto (2001) suggested

the use of the adult modal age at death (M) and the standard deviation of individual life

durations occurring above the modal age at death (SD(M+)) as indicators of the human

life span. The adult modal age at death consists in a central longevity indicator while the

standard deviation above it measures the dispersion of ages at death above the mode. In

a recent paper, Cheung and Robine (2007) developed an additional indicator in the form

of M + kSD(M+) to describe how far the highest normal life durations can go beyond the

adult modal age at death M .

It is worth noting that unlike the life expectancy at birth, the late modal age at death
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is strictly influenced by adult mortality and therefore much more sensitive to changes in

mortality among the elderly population. It therefore consists in an useful tool to monitor

and explain changes in the age-at-death distribution in populations where most deaths occur

at older ages (Kannisto 2000, Kannisto 2001, Robine 2001, Cheung et al. 2005, Cheung and

Robine 2007, Canudas-Romo 2008).

In order to obtain an accurate estimation of the late modal age at death for a given region and

period, parametric models, which imply fairly rigid theoretical assumptions and modeling

structure, have been used by Cheung et al. (2007, 2008). We propose to use a flexible

nonparametric approach based on regression splines, specifically B -splines with roughness

penalties known as P -splines (Eilers and Marx 1996), to obtain a smooth density function

describing the distribution of deaths. Quantiles from both sides of the estimated late modal

age at death serve as our dispersion indicators and are used to monitor changes in the

compression of mortality regime over time.

3 Data and methods

For a given region and period, the observed number of deaths Yi and person-years Ei at age

i = 1, . . . , n are taken from the Canadian Human Mortality Database (CHMD) or the Human

Mortality Database (HMD). Note that throughout this paper, we will focus on mortality

occurring at age 10 and above. Infant and child mortality present unique features that

would require the use of a methodology suited for ill-posed data, which goes beyond the

scope of this research.

The CHMD gathers detailed data on Canada, its provinces and territories, while the HMD

is an international database which currently holds data on 37 countries and regions. Both

databases are updated on a regular basis and are respectively available to researchers thru the

following Internet sites: www.bdlc.umontreal.ca and www.mortality.org. The fact that

these databases rely on a common methodology is a definite advantage for result comparison.

The high level of data quality offered by the CHMD and the HMD also makes these databases

very attractive.

Let mi denote the death rate at age i given by the following ratio

mi =
Yi

Ei

.
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Under the assumption of a true constant instantaneous death rate µi within each age and

time interval, the number of deaths Yi is Poisson-distributed with mean Ei · mi, that is

Yi ∼ Poisson(Ei · mi). (1)

The Poisson regression model used in this paper is based on this assumption. Since our

response variable y is non-normally distributed, we introduce a linear predictor η and the

logarithm as the (canonical) link function g(·), such that

η = g(E[y])

= ln(E[y]). (2)

Alternatively, we have

E[y] = g−1(η)

= eη.

The Poisson regression model assumes that η can be modelled by a linear combination

of unknown parameters. We suggest the use a flexible nonparametric approach based on

regression splines, specifically B -splines with penalties known as P -splines, to estimate those

parameters.

B -splines consists of polynomial pieces that are joined at certain abscissa values called

“knots”. The degree of the polynomial is set by the user, while the number of knots and their

position can be chosen according to automatic optimization schemes developed by Friedman

and Silverman (1989) and Kooperberg and Stone (1991, 1992). Formulas by de Boor (1977,

1978), Cox (1981) or Dierckx (1993) can then be used to compute the B -splines recursively.

A set of B -splines is called a “B -spline basis” and is well-suited for smoothing observed

data points (xi, zi), i = 1, . . . , n. Figure 4 shows an example of a B -spline basis, which

contains a set of 8 equally-spaced B -splines of degree 3 (cubic B -splines). The basis matrix

B associated with this particular B -spline basis is defined as

B =











B1(x1) B2(x1) . . . B8(x1)

B1(x2) B2(x2) . . . B8(x2)
...

...
...

...

B1(xn) B2(xn) . . . B8(xn)











,

where Bj(xi), j = 1, . . . , 8 denotes the value at xi of the jth cubic B -spline. A fitted curve

ẑ to observed data points (xi, zi) is then expressed by

ẑ(xi) =
8

∑

j=1

âjBj(xi),
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where âj is the estimated regression coefficient of Bj(xi). More generally, we have

ẑ = Bâ. (3)
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Figure 4: B -spline basis containing 8 cubic B -splines with equally-spaced knots

B -splines are certainly attractive for nonparametric modeling, but the task of choosing the

optimal number and positions of the knots remains a very complex one. The use of equidis-

tant knots may be seen as a good option, but it often leads to limited control over smoothness

and fit. Inspired by the work of O’Sullivan (1988), Eilers and Marx (1996) developped the

P -splines approach, which combines B -splines and difference penalties on the estimated co-

efficients of adjacent B -splines. The idea behind this approach is to use a relatively large

number of equally-spaced knots, and to apply a penalty on the regression coefficients to en-

sure a smooth variation and avoid over-fitting. Recourse to optimization schemes to define

knots is therefore no longer required.

From relations (1), (2) and (3), we have

η = ln(E[y]) = ln(e · m) = ln(e) + ln(m) = ln(e) + Ba,

where y, e, m are repectively deaths, person-years (or exposures) and death rates vectors

for a given region and period. The term ln(e) is commonly referred to as the offset in a

Poisson regression setting. Furthermore, B is the B -spline basis matrix and a is the vector

of respective regression parameters to estimate.
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Using the P -spline approach to estimate a, we obtain

η̂ = ln(e) + Bâ,

and a smoothed trend for the intantaneous death rate, namely the hazard function h(x), can

be estimated as well. The corresponding smoothed survival function Ŝ(x) expressed as

Ŝ(x) = e−
∫

x

0
ĥ(t)dt

can then be obtained thru numerical integration techniques. Furthermore, since

h(x) =
f(x)

S(x)
,

the smoothed density function describing the age-at-death distribution, f̂(x), is given by

f̂(x) = ĥ(x)Ŝ(x).

The late modal age at death for some region and period in time corresponds to

max
x

f̂(x),

and quantiles from both sides of this estimated late mode can be easily computed to monitor

changes in the compression of mortality over time. Note that as pointed out by Wilmoth

(1997), the three curves h(x), S(x) and f(x) are related in such way that changes in one of

them will necessarily be reflected in the other two. In this paper, we focus on the smoothed

density function describing the age-at-death distribution, but analysis based on ĥ(x) or Ŝ(x)

would have led to the same conclusions.

4 Results

To be continued.
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32(1), 43-75.

Nagnur D. (1986). Rectangularization of the survival curve and entropy: The Canadian

experience, 1921-1981. Canadian Studies in Population 13, 83-102.

Oeppen J., and Vaupel J. W. (2002). Broken limits to life expectancy. Science 296, 1029-1031.

O’Sullivan F. (1986). A statistical perspective on ill-posed inverse problems (with discussion).

Statistical Science 1, 505-527.
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