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Abstract

Survival analysis is a common tool in the analysis of the timing of

events. Survival models have been applied to a vast number of areas of

sociological research. In this paper we show how to embed survival models

in structural equation models (SEMs) while taking advantage of additional

features possible in a SEM approach. Using empirical examples of time to

promotion and timing of intercourse, we show that we can replicate the

more traditional survival model results, but more importantly, we show

how to control for measurement error and permit mediating variables.

By doing so we provide additional options useful to sociologists who use

survival models.
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1 Introduction

Following their introduction into the discipline in the late 1970s, survival models

have become a common tool in the analysis of the timing and occurence of

events of sociological signi�cance. Sociologists have drawn on survival models, or

event-history models, to further our understanding of social processes, including

the di¤usion of protests (e.g., Andrews and Biggs 2006), marriage formation

(e.g., Sweeney 2002), the passage of laws (e.g., Behrens, Uggen, and Manza

2003), and organizational demography (e.g., Sørensen 2004). As the use of

survival models has spread throughout sociology the models have been extended

to address various departures from the standard model. For instance, Allison

(1984) covers how to handle multiple types of events and repeated events, Guo

(1993) demonstrates how to address left-truncated data, and Allison (2005)

reviews �xed-e¤ects survival models. Until recently, however, it has not been

known how to accomodate measurement error in the covariates and how to

simultaneously model systems of equations allowing for the e¤ects of mediators.

Accommodating measurement error is important since ignoring such error will

bias our estimates of the impact of covariates and will mislead researchers.

Simultaneous equations permits a fuller understanding of a variable�s direct,

indirect, and total e¤ects. Survival analysis as currently practice reveals only

the direct e¤ect which can di¤er from its indirect e¤ects.

Recent work in the area of educational statistics has demonstrated that

survival models can be treated as a speci�c case in the more general class of

structural equation models (Asparouhov, Masyn, and Muthén 2006; Muthén
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and Masyn 2005; Masyn 2003). In this article, we provide an overview of this

work with a focus on discrete-time survival models for a sociological audience.

These prior works do not consider multiequation models and mediating vari-

ables. Given the advantages of doing so, we also include a discussion of such

models in our presentation. Following a brief discussion of discrete-time survival

models, we illustrate how these models �t into a structural equation modeling

framework. Next, using Allison�s (1995) data on the careers of biochemists, we

demonstrate how to estimate several basic models and in the process document

that one obtains the same results as the more conventional approach to estimat-

ing these models. We conclude with an extended empirical example in which we

illustrate the advantages of this approach in accounting for measurement error

and allowing for mediating and indirect e¤ects.

2 Discrete-Time Survival Models

The two primary types of survival models are continuous-time and discrete-

time. Continuous-time models are typically employed when the �exact�timing

of an event is known (e.g., the day and year of death). Discrete-time models,

in contrast, are generally used when only the interval in which an event occurs

is known or the event itself occurs in discrete intervals (e.g., the year in which

respondents marry). In practice, the distinction between whether an event is

measured in continuous-time or discrete-time is arbitrary (in a technical sense,

all events of sociological interest can be considered as measured in discrete-time)
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and the choice between continuous-time and discrete-time models depends on

other factors, such as the existence of ties in the data (i.e., individuals who

experience the event of interest at the same time point), whether a speci�c

parametric function of time is appropriate, and computational considerations.

As many sociological applications involve the use of discrete-time models, we

focus on this class of models in this work; however, it is also possible to estimate

continuous-time survival models in a structural equation modeling framework

(see Asparouhov et al. 2006).

Survival data consists of at least two pieces of information for each case

regarding an event: (1) the time until an event occurs or the case is no longer

observed and (2) an indicator of whether the case experienced the event. A

case that does not experience the event while under observation is said to be

censored as the time to event is unknown. Allison (1995) describes three types

of censoring: Type I, Type II, and random (see also Singer and Willett (2003)

for a helpful discussion). Type I censoring occurs when the censoring time is

�xed by design and all observations share the same censoring time (e.g., the end

of a study). Type II censoring occurs when cases are no longer observed after

a predetermined number of events. Random censoring refers to the situation

when a case is no longer observed for any reason not under the control of the

investigator (e.g., sample attrition in a longitudinal study). These cases can

be problematic for the analysis. If the reason for censoring, conditional on the

covariates in the model, is related to the event of interest, then the censoring

is considered informative and parameter estimates can be badly biased (Allison
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1995).1 For example, in an analysis of the duration of spells of unemployment,

the people who are not able to be followed over time (i.e., censored) may be

more likely to experience longer spells of unemployment. Unfortunately, it is

not possible to test whether random censoring is informative or non-informative

(but, see Allison (1995) for one approach to assessing the sensitivity of results to

the potential presence of informative censoring). In the following development

of the models we assume censoring is non-informative; if researchers have reason

to believe otherwise, as usual, results should be interpreted with caution.

2.1 Survival and Hazard Functions

In the discrete-time framework with non-repeated events there are two proba-

bilities of primary interest: the hazard probability and the survival probability.

The hazard probability refers to the probability of a case experiencing an event

in a time interval given that the case has not experienced the event in any pre-

vious time interval. Formally, let T be a discrete random variable, i an index

for cases, and j an index for time periods. Then T takes on values Ti which

indicate the time period j when case i experiences an event. The hazard prob-

ability expressed as a function of time is given as the conditional probability

density function

h(tij) = Pr[Ti = jjTi � j]: (1)

1As we will discuss below, the concepts of informative and non-informative censoring closely
mirror di¤erent types of missing data.
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The conditional nature of the hazard probability is important to keep in mind.

A case can only experience an event in time period j if and only if the case has

not already experienced the event. Such cases that are eligible to experience an

event are said to be in the risk set.

The survival probability is de�ned as the probability of surviving, or not

experiencing an event, beyond a given time period j. We can express the survival

probability as

S(tij) = Pr[Ti > j]: (2)

As one would expect, the hazard and survival probability are closely related. In a

discrete-time setting the survival probability can be considered the probability

of not experiencing the event in any prior time period. For any single time

period, the probability of not experiencing the event, given the case is in the

risk set, is simply one minus the hazard probability. Taking the product, the

survival probably can also be written as

S(tij) =

jY
k=1

(1� h(tik)) : (3)

Using this formula, it is easy to calculate the estimated survival probability for

any given time point using the estimates of the hazard probabilities (due to

censoring, however, it is not possible to calculate the hazard probabilities from

the survival probabilities).
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2.2 Maximum Likelihood Estimation

The method of maximum likelihood is the most common approach to obtain

estimates of the hazard probabilities for the population. For discrete-time sur-

vival models, the likelihood function expresses the probability of observing the

pattern of the occurrences of the event in the data. The pattern of events arises

from arraying the data in a case-period format such that each case contributes

as many observations as time periods they are in the risk set. In this format an

indicator variable (�ij) denotes for each time period whether a case experiences

an event. As noted in (1), the hazard captures the probability that case i expe-

riences an event in time period j conditional on being in the risk set. Therefore

if case i experiences the event in time period j the case contributes h(tij) to the

likelihood function. Conversely, if case i does not experience the event in time

period j, the the case contributes 1 � h(tij) to the likelihood function. Taking

the product over all cases (indexed by N) and all time periods cases remain in

the risk set (indexed by Ji), we can write the likelihood function as

L =

NY
i=1

JiY
j=1

�
h(tij)

�ij (1� h(tij))1��ij
�
: (4)

As we will demonstrate below, we derive an identical likelihood function esti-

mating these models as structural equation models.

In most research sociologists are interested in estimating the relationship

between a set of covariates and the hazard probabilities. One of the advantages

of survival models is that covariates are not forced to be static, they may vary
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over time. In the discrete-time setting the logit link is the most widely used and

the resulting model can easily incorporate both time invariant and time-varying

covariates. Let X and Xj respectively be matrices of time invariant and time-

varying covariates, � and � vectors of coe¢ cients, and � a vector of intercepts

for each time period. Then we can write the logit of the hazard probability as

log

�
h(tij)

1� h(tij)

�
= �+X� +Xj�: (5)

In this form of the model, the e¤ects of both the time invariant and the time-

varying variables are constrained to be the same for each time period. This is

often referred to as the proportional hazard odds property. In many instances,

it is not reasonable to assume that the e¤ects of the covariates will remain

constant over time. For example, one might imagine that the e¤ect of self-

esteem on the hazard of �rst intercourse could change as individuals grow older.

Fortunately, it is easy to relax the proportional hazard odds property and test

it; one simply adds interactions between the covariates and the time period

indicators contained in the vector of intercepts.

2.3 Structural Equation Models

In this section, we provide a brief overview of structural equation models (SEMs)

before turning to how we can estimate discrete-time survival models in a struc-

tural equation modeling framework. SEMs are a general class of statistical

models consisting of multiequation systems that represent relationships between
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latent and observed variables. Many models commonly employed by sociologists

can be estimated as SEMs. For instance, general linear models, factor analysis,

and simultaneous equations are all special cases of SEMs (Bollen 1989).

Structural equation models have two primary components: the latent vari-

able model and the measurement model. The latent variable model is

�i = �� +B�i + ��i + �i; (6)

where �i is a vector of latent endogenous variables, �� is a vector of intercept

terms, B is a matrix of coe¢ cients containing the e¤ects of the latent endoge-

nous variables on each other, �i is a vector of latent exogenous variables, �

is a coe¢ cient matrix containing the e¤ects of the latent exogenous variables

on the latent endogenous variables, and �i is a vector of disturbances. The

i subscript indexes the ith case in the sample. In this model we assume that

E(�i) = 0; COV (�
0
i; �i) = 0, and that (I�B) is invertible. Exogenous variables

are determined outside the system of equations, while endogenous variables are

in�uenced by other variables in the system.

The measurement model links the latent to the observed variables (indica-

tors). The following two equations capture this relationship:

yi = �y +�y�i + "i (7)

xi = �x +�x�i + �i;

where yi and xi are respective vectors of indicators of the latent variables in
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respectively �i and �i, �y and �x are respective vectors of intercept terms, �y

and �x are respective matrices of factor loadings, and "i and �i are vectors of

disturbances. We assume that E("i) = E(�i) = 0 and that "i; �i; �i; and �i

are all uncorrelated.

SEMs have been generalized to account for categorical dependent variables.

Following Long (1997), a limited-dependent variable model can be written as

y�i =Xi� + "i; (8)

where y�i is an unobserved continuous variable related to the observed categorical

variable yi. The precise relationship depends on the nature of the categorical

variable. For a dichotomous variable, the relationship can be written as

yi =

8>><>>:
1 if y�i > �

0 if y�i � �

9>>=>>; : (9)

This equation represents a threshold model. When the underlying continuous

variable exceeds some threshold � , a 1 is observed, otherwise a 0 is observed.

In order for the model to be identi�ed, one must assume a distribution for

the disturbance "i. In practice, the default assumption for SEMs is that the

disturbance follows a standard normal distribution, in which case we have a

probit regression model. For our purposes, however, it will be convenient to

assume that the disturbance follows a standardized logistic distribution with a

mean of 0 and a variance of �2=3, in which case we have a logistic regression
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model.

3 Discrete-time Survival Models as SEMs

To incorporate discrete-time survival models into a SEM framework we need

a way to estimate the hazard probabilities for each time interval. Returning

to our de�nition of a hazard probability as the conditional probability of a

case experiencing an event in a time interval given the case is in the risk set

suggests one approach. Imagine for each time period that each case in the

risk set has an underlying latent propensity to experience an event and if a

threshold is exceeded then the case experienced the event. In this set-up, if we

assume a standardized logistic distribution for the disturbance, then the hazard

probability for the jth time period is related to the threshold for the jth time

period � j as

h(j) =
1

1 + exp[�� j ]
: (10)

We can then estimate the hazard probabilities for all of the time points simul-

taneously through a system of logistic models. We illustrate this in Figure 1,

where the circles represent the underlying latent propensities to experience an

event for each time period, the rectangles represent observed event indicators

for each time period, and the jagged lines represent the nonlinear relationships

between the latent propensities and the observed indicators.

�Figure 1 about here �

11



Estimating the hazard probabilities using this approach requires a wide for-

mat for the data rather than the long, or case-period, format needed for standard

discrete-time survival models (see Figure 2). To prepare the data, the analyst

needs to create event indicators for every time period in the data. For each case,

the event indicators can take three values:

Eij =

8>>>>>><>>>>>>:
0 did not experience event in time period j

1 experienced event in time period j

: not in risk set in time period j

9>>>>>>=>>>>>>;
: (11)

Once a case experiences an event or is censored, all of the subsequent event

indicators should be set to missing. This ensures that only cases in the risk set

are included in the estimation of the hazard probability for each time interval.

Estimating the system of logistic models with missing data included relies on

the assumption that the data are missing at random (Little and Rubin 2002),

which in this setting corresponds to the assumption of noninformative censoring.

With the data in wide format, time invariant covariates simply occupy a column

for each, but time-varying covariates need to be prepared in a similar fashion

to the event indicators (see Figure 2 for an illustration).

�Figure 2 about here �

3.1 Maximum Likelihood Estimation

Given the organization of the data, we take a di¤erent approach than used

above in deriving the likelihood function in the SEM framework. Because the
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data is in wide format and the cases not in the risk set for any time inter-

val are treated as missing on the respective event indicators, we note that the

conditional probability of experiencing an event in each time interval is given

by

h(tij) = Pr[Eij = 1] (12)

and, conversely, the conditional probability of not experiencing an event is given

by

1� h(tij) = Pr[Eij = 0]: (13)

Letting �i be an indicator for whether a case experiences an event while under

observation, we can write the individual likelihood function as

Li = Pr[Eij = 1]
�i

Ji�1Y
j=1

Pr[Eij = 0]: (14)

Taking the product over all of the cases gives us the likelihood function for

the sample, and with a little rearrangement and substiting in (12) and (13) we

obtain the same likelihood function that we derived above (4);

L =
NY
i=1

24Pr[Eij = 1]�i Ji�1Y
j=1

Pr[Eij = 0]

35
=

NY
n=1

JiY
j=1

�
h(tij)

�ij (1� h(tij))1��ij
�
:

The equality follows due to the fact that for the �rst Ji � 1 terms �ij = 0 and

for the �nal Jth term 1� �ij = 0.
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With an approach for estimating the hazard probabilities in place, we can

extend our model to include time invariant and time-varying covariates. In

Figure 3, we illustrate a model with a single time invariant covariate (x1) and

a single time-varying covariate (x2j). In this model, we include a composite (�)

that captures the time invariant in�uences on the hazard probability. In contrast

to an endogenous latent variable, this composite does not have a disturbance

associated with it, rather it is completely determined by the time invariant

covariate. The composite does not vary over time, so the e¤ects of the time-

varying covariate are represented directly as paths from the covariate to the

latent propensities for the respective time points. Note, however, that in this

model the e¤ects of the time-varying covariate are constrained to be equal across

all of the time intervals. This corresponds with the proportional hazard odds

property and, as noted above, can be relaxed and tested.

�Figure 3 about here �

More generally, the model illustrated in Figure 3 can be represented by the

following system of equations:

log

�
h(j)

1� h(j)

�
= �� j + � +Xj� (15)

� = X�:

X and Xj are respectively matrices of time invariant and time-varying covari-

ates, and � and � are vectors of coe¢ cients. As opposed to the vector of

intercepts in (5), we have a vector of thresholds (� j). In addition, we see that
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the log odds of the hazard is a function of �, which in turn is determined by

X�. In order to relax the proportional hazard odds property, we can simply free

the constraint that the parameter estimates are equal across the time points.

For time-varying covariates, this is easily re�ected in our model by adding a

subscript j to �. Since the composite � does not vary over time, in order to

relax this constraint for time invariant covariates they needed to be added to

the log hazard odds function. The system allowing for all coe¢ cient estimates

to vary over time can be written with the single matrix equation,

log

�
h(j)

1� h(j)

�
= �� j +X�j +Xj�j : (16)

4 Careers of Biochemists

To illustrate how to estimate a few basic discrete-time survival models in a

structural equation modeling framework we draw on a dataset on the careers

of biochemists provided as an example in Allison (1995). All of our structural

equation models are estimated using Mplus (Version 5.1) (Muthén and Muthén

2007) and our comparison models are estimated using Stata (Version 10.0). We

provide the Mplus code for all of our models in the Appendix.

The data for our examples consists of the years to promotion for 301 as-

sistant professors of biochemistry (see Table 1 for descriptive statistics). The

biochemists�careers were followed for up to 10 years after they were hired. Of

the 301 professors, 72 percent were promoted during the 10 year period of ob-
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servation. With this data we are able to examine the relationship between three

time-invariant covariates and one time-vary covariate and the hazard of pro-

motion. For time-invariant covariates, we have a measure of the selectivity of

the undergraduate institution the individuals attended, whether the individual

earned his or her Ph.D. from a medical school, and the prestige of the Ph.D.

granting institution. For our time-varying covariate, we have a cumulative count

of the number of article published by each individual for each year.

�Table 1 about here �

We �rst estimate a baseline model, illustrated in Figure 4 panel A, that

just includes the hazard rate for each time period (see Table 2). Because this

model does not include any covariates, the estimates for the hazard rates should

be equal to the proportion of the sample promoted for that time period. This

is, in fact, the case, which can be seen using the following formula relating

the threshold estimates to the hazard rate and comparing the results with the

descriptive statistics in Table 1:

h(j) =
1

1 + exp(� j)
: (17)

For example, the estimated hazard probability for promotion in year 5 based

on the model is 1
1+exp(1:09) = 0:25, which matches the proportion of the sample

promoted in year 5 (see Table 1). We also note that the parameter estimates

obtained from estimating the survival model as a SEM are within a hundredth of

a decimal point of those obtained from estimating the model using the standard
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logistic regression approach. The tau estimates are related to the intercept and

parameter estimates for the time period indicators by

�� j = �+ �j , (18)

so, for example, we see that the negative of the threshold estimate for year

3, 2:78, equals the intercept plus the estimate of the coe¢ cient for the year 3

indicator variable, �5:70 + 2:92 = �2:78. Finally, we also note that we obtain

the same log likelihood with both approaches.

�Figure 4 about here �

�Table 2 about here �

Adding covariates to the model (see Figure 4 panel B), we �nd that both

undergraduate selectivity and the cumulative number of articles published are

signi�cantly positively associated with the hazard of promotion. As with our

baseline model, we �nd that there are essentially no di¤erences in the parameter

estimates and the log-likelihoods between the two approaches. We also note that

the standard errors for the estimates of the covariates are identical.

With this example we have little theoretical reason to expect the e¤ects of

the covariates may vary over time; however, it is generally a good idea to test

whether the proportional hazard odds property should be relaxed. We illustrate

how to do this by relaxing the constraint of equal parameter estimates for the

e¤ect of undergraduate selectivity (see Figure 4 panel C). We see some indication

that the e¤ect of undergraduate selectivity on the hazard of promotion varies

17



over time (see Table 3), but it does not seem to follow a meaningful pattern and

for most years the e¤ect is not statistically signi�cant. Furthermore, a likelihood

ratio test (see Table 4) indicates that the model relaxing the proportional hazard

odds property does �t the data signi�cantly better than a model maintaining

the property. We also note that once again the parameter estimates we obtain

using a SEM framework match those using a standard estimation procedure.

5 Extended Empirical Example

The last section illustrated that SEMs can incorporate the traditional discrete-

time survival model and replicate results obtained with more traditional ap-

proaches. For our �nal empirical example we consider a model that illustrates

some of the advantages of estimating discrete-time survival models as structural

equation models. Research on the transition to �rst intercourse among adoles-

cents has found religiosity and attitudes regarding sex are important predictors

of initiation (Meier 2003). In theoretical models of this process, religiosity is

posited to have both a direct e¤ect on the probability of having sex and an

indirect e¤ect through its relationship to attitudes about sex. There are two

advantages to estimating such a model as a structural equation model. First,

religiosity and attitudes about sex are concepts for which we have several in-

dicators. Treating these concepts as latent variables allows us to account for

measurement error and to get a sense of how well the indicators capture the

theoretical concepts. Ignoring the measurement error would create biased coef-
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�cient estimates. Second, given that our theoretical model includes both direct

and indirect e¤ects, SEMs provide a convenient way of exploring these relation-

ships.

5.1 Time to First Intercourse Data

For our analysis we use data from the Waves I and III of the National Longitudi-

nal Study of Adolescent Health (Add Health). Add Health began as nationally

representative sample of adolescents in grades 7 through 12 in 1994/95 (Harris

et al. 2003). Respondents were followed for two additional waves of in-home

interviews, with Wave III collected in 2002. We determine the age of �rst in-

tercourse based on respondents�self-reports at Wave III. There is some concern

about the accuracy of retrospective reports of age of �rst sex; however, Up-

church et al. (2002) found in an analysis of Add Health data through Wave

2, inconsistencies in reporting appeared to be random. In order to ensure that

our measures of religiosity and attitudes regarding sex are temporally prior to

initiation of sexual activity, we drop any cases in which the respondent reported

having sex for the �rst time prior to the Wave I interview.2 Finally, we drop

a little less than 10 percent of the cases missing data on mother�s education.

These leaves us with an analysis sample of 9,914 respondents.

�Table 5 about here �
2Dropping these cases raises the possiblity of selection bias, which we do not address in this

example (see Meier (2003) and Bearman and Brückner (2001) for approaches to accounting
for selection bias or testing the robustness of the results).

19



Of 9,914 respondents, 18 percent did not initiate sexual activity between

Wave 1 and Wave 3 of the study and so are treated as censored observations

(see Table 5). The age of �rst intercourse in our sample ranges from 12 to 25.

We only observe individuals for roughly seven years (the time between Wave 1

and Wave 3), so in creating our event indicators we have missing data at both

ends of the age range. This should not be confused with left-censoring, but

rather simply re�ects the fact that respondents enter the data at Wave 1 at

di¤erent ages.

Following Meier (2003), we consider four Likert-scale measures of religiosity:

(1) �In the past 12 months, how often did you attend religious services?�, (2)

�In the past 12 months, how often did you attend such youth activities?�, (3)

�How often do you pray?�, and (4) �How important is religion to you?�. For

the purpose of comparison, we construct a religiosity scale as the average of

the non-missing items (� = 0.85). Also following Meier (2003), we consider six

attitudes about sex.3 These items were only asked of respondents at least 15

years old and not married. Three of the attitudes express negative sentiments:

If you had sexual intercourse, (1) �your partner would lose respect for you�, (2)

�afterward, you would feel guilty�, and (3) �it would upset [name of mother]�.

Three others express positive sentiments: if you had sexual intercourse, (1) �your

friends would respect you more�, (2) �it would make you more attractive to

women/men�, and (3) �you would feel less lonely.�Based on these items, we

3Meier also uses a seventh item: �if you had sexual intercourse, it would give you a great
deal of physical pleasure.� This item stood out in our measurement models and so we chose
not to include it. [Probably need a better/more precise justi�cation for excluding
this item.]
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created two scales: (1) negative sentiments about sex (� = 0.67) and (2) positive

sentiments about sex (� = 0.70).

Research on the transition to intercourse has found that the probability of

initiation di¤ers by gender, race/ethnicity, and mother�s education (Meier 2003,

Bearman and Brückner (2001), Day (1992)). We include these background

characteristics to account for the known di¤erences. As our main purpose in this

example is to explore the relationship between religiosity, attitudes regarding

sex, and the initiation of sexual activity, this is not intended to be an exhaustive

list of background characteristics that may be related to the transition to �rst

intercourse.

In our �rst set of models we only use cases with complete data on the covari-

ates. This involves dropping roughly 4,000 cases missing data on the measures

of attitudes regarding sex due to the legitimate skip pattern noted above. Given

the nature of the skip pattern and that we include the age of the respondent at

Wave 1 as a covariate, one can make the case that these data are missing at ran-

dom (MAR). Therefore, as a comparison model, we take advantage of the same

method of handling missing data that we are using for the hazard component

of the model to estimate the parameters using the full analysis sample.

5.2 Analysis of Time to First Intercourse

5.2.1 Measurement Models

Our �rst task is to develop the measurement models for our latent covariates

religiosity and attitudes regarding sex. For religiosity we consider two mea-
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surement models. Our �rst model involves a single latent dimension with four

indicators, our second is a model with two latent dimensions each with two in-

dicators (see Figure 5, Panels A and B). A model with a single latent dimension

allowing for no measurement error and constraining the loadings to equal one

is equivalent to the standard practice of creating a single scale from the four

measures. We �nd that the model with a single latent dimension has a poor �t

with the data according to a number of measures (see Table 6). In particular,

the model �2 is signi�cant, the RMSEA is well over 0.05, and the BIC is large

and positive. As a justi�cation for our second model, we felt that the concept

of religiosity may consist of two dimensions: a dimension related to involvement

in the religious community and a more personal dimension. For each of these

dimensions we have two indicators. To identify the model, we scale the latent

variable associated with involvement to our measure of attending services and

we scale the latent variable associated with personal beliefs to the measure of

the importance of religion. This model �ts the data quite well. We �nd a

non-sign�cant model �2, an RMSEA of 0.01, and a negative BIC.

�Figures 5 here �

Turning to the parameter estimates, we �nd both of the free factor loadings

are signi�cant in the expected direction of e¤ect. We also �nd that three out

of four of the measures have reliabilities between 0.7 and 0.85, but one, youth

group attendance, has a more modest 0.42 reliability. Finally, we note that

the estimated correlation between religious involvement and personal beliefs is

0.83. As we would expect, this correlation is high, but these do appear to be
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two distinct dimensions. Given the strong overall �t and the sensible parameter

estimates, we adopt this model with two latent dimensions of religiosity in the

following analyses.

�Table 6 about here �

We consider a similar set of models for attitudes regarding sex (see Figure

6, Panels A, B, and C). We �nd that a one dimensional model does not �t

the data. We �nd that a two dimensional model including latent variables for

positive and negative attitudes related to sex has a substantially better �t with

the data, but there are still some indications that the model does not adequately

�t the data (see Table 6). The �2 remains signi�cant, the RMSEA is greater

than 0.05, and the BIC is positive. We examine a third model that introduces a

correlation among the error terms for the two measures involving respect (one�s

partner and one�s friends). We �nd that this model has a signi�cantly better

�t than the previous model, but the �t is still not ideal for the same reasons as

the second model.

�Figure 6 about here �

Looking at the parameter estimates, we �nd that the free factor loadings

are all signi�cant and in the expected direction.4 In terms of the reliabilities of

the items, we �nd more variation than we did for the religiosity items. Three of

the items have quite low reliabilities around 0.25: partner would lose respect,

it would upset your mother, and friends would respect you more. Two items
4For ease of interpretation, we coded all of the attitude items such that high values would

be theoretically associated with an increased likelihood of initiating sexual activity.
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have reliabilities around 0.55: it would make you more attractive and you would

feel less lonely. Finally, one item, you would feel guilty, has a high reliability

of 0.82. The two dimensions of sexual attitudes do appear to capture fairly

distinct dimensions as they have a relatively low correlation of 0.28. We also

�nd that a signi�cant negative association between the error terms for the two

items measuring respect. This appears to be due to the fact that the original

wording of the items had opposite valences, which were rendered the same by

reverse coding the second item. Although the overall �t and the reliabilities of

some of the items indicate that we do not have as strong a model for attitudes

regarding sex as we do for religiosity, we do not see any other theoretically-

motivated improvements to the model. So, in the following analyses, we use our

third model.

5.2.2 Structural Models

As a basis for comparison, we �rst estimate a model in which we use only

observed variables �that is, we use scales for religiosity, positive, and negative

attitudes regarding sex (see Figure 7, Panel A). This corresponds to the typical

sociological application where measurement error in covariates is ignored. In our

second model, we replace the scales with the measurement models we developed

for the two dimensions of religiosity and positive and negative attitudes related

to sex (Figure 7, Panel B). Finally, in our third model, we build in the theoretical

relationships among religiosity and attitudes related to sex (Figure 7, Panel C).

�Figure 7 about here �
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In our �rst model, consistent with past research we �nd that religiosity is

signi�cantly negatively associated with the hazard of �rst intercourse (see Table

7). We also �nd that positive and negative attitudes regarding sex are signi�-

cantly related to the hazard of �rst intercourse in the expected directions (we

reverse coded the negative attitudes such that the expected e¤ect is positive).

When we account for measurement error in religiosity and attitudes related to

sex a di¤erent pattern emerges. Although both dimensions of sexual attitudes

remain signi�cantly associated with the hazard of �rst intercourse, neither di-

mension of religiosity remains signi�cant. This suggests that failing to account

for measurement error may lead one to erroneously conclude that religiosity has

a direct e¤ect on the initiation of sexual activity among adolescents. This is not

to say that religiosity has no e¤ect. In model three we examine the e¤ects of re-

ligiosity on attitudes regarding sex. We �nd that both dimensions of religiosity

have a signi�cant association with negative sexual attitudes and the dimension

of religiosity related to one�s beliefs has a signi�cant association with positive

attitudes concerning sex. In addition, both dimensions of attitudes regarding

sex remain signi�cant predictors of the hazard of �rst intercourse. Therefore,

as one would anticipate from our theoretical model, religiosity has an indirect

e¤ect on the hazard of �rst intercourse through it�s e¤ect on attitudes related

to sex.

�Table 7 about here �

In our �nal model, we reestimate our third model using all of the available

cases. This increases our sample size by roughly 4,000 cases, almost entirely due
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to the missing data for the sexual attitudes items. This approach also allows

us to examine cases initiated sexual activity as early as age 12. Although the

precise parameter estimates di¤er, we obtain substantively the same pattern of

results as in our complete case analysis.

�Table 8 about here �

5.3 Summary

We chose this example to demonstrate some of the bene�ts of estimating discrete-

time survival models as structural equation models. In this case, we see that

accounting for measurement error in one of the key concepts is consequential for

the substantive interpretation of the results. Without addressing measurement

error in the religiosity scale, one might incorrectly conclude that religiosity has

a direct e¤ect on the age of �rst intercourse.

6 Conclusion

In this paper we have demonstrated how researchers can estimate discrete-time

survival models in a structural equation modeling framework. In our �rst set of

analyses, we documented that the parameter estimates from SEM discrete-time

survival models match those obtained from the standard approach to estimat-

ing discrete-time survival models. In our second set of analyses, we illustrated

some of the potential bene�ts estimating discrete-time survival models in a

SEM framework. In particular, we provided an example in which accounting
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for measurement error in the covariates had an appreciable e¤ect on the results.

Furthermore, we discussed another bene�t of the SEM approach, the ability

to explore mediational relationships and indirect e¤ects. Given the potential

presence of measurement error and indirect relationships in many areas of soci-

ological and demographic research as well as the utility of survival analysis, the

ability to estimate these models as SEMs may prove widely bene�cial.
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8 Tables and Figures

Table 1: Descriptive Statistics

N Mean SD N Mean SD

Ever Promoted 301 0.72 0.45

Promoted y1 301 0.00 0.06 Tot Articles y1 301 4.03 3.72

Promoted y2 299 0.00 0.06 Tot Articles y2 299 5.05 4.41

Promoted y3 292 0.06 0.23 Tot Articles y3 292 6.25 5.20

Promoted y4 263 0.16 0.37 Tot Articles y4 263 7.37 5.57

Promoted y5 211 0.25 0.43 Tot Articles y5 211 8.42 6.16

Promoted y6 149 0.31 0.46 Tot Articles y6 149 9.36 6.74

Promoted y7 96 0.32 0.47 Tot Articles y7 96 9.71 7.42

Promoted y8 59 0.25 0.44 Tot Articles y8 59 10.25 8.09

Promoted y9 42 0.17 0.38 Tot Articles y9 42 10.12 9.70

Promoted y10 29 0.14 0.35 Tot Articles y10 29 9.41 8.06

Undergrad Select. 301 5.03 1.34

PhD Med School 301 0.63 0.48

PhD Prestige 301 3.20 0.98
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Table 2: Comparison of Parameter Estimates

Baseline Model Model with Covariates

Mplus Stata Mplus Stata

Est SE Est SE Est SE Est SE

�1 / int 5.70 1.00 -5.70 1.00 6.66 1.08 -6.66 1.08

�2 / y2 5.70 1.00 0.01 1.42 6.75 1.08 -0.08 1.42

�3 / y3 2.78 0.25 2.92 1.03 3.93 0.49 2.74 1.03

�4 / y4 1.66 0.17 4.04 1.02 2.86 0.45 3.81 1.02

�5 / y5 1.09 0.16 4.61 1.01 2.35 0.45 4.31 1.02

�6 / y6 0.81 0.18 4.90 1.03 2.11 0.45 4.55 1.02

�7 / y7 0.74 0.22 4.96 1.03 2.06 0.47 4.60 1.03

�8 / y8 1.08 0.30 4.63 1.05 2.41 0.51 4.25 1.05

�9 / y9 1.61 0.41 4.09 1.08 2.98 0.59 3.68 1.10

�10 / y10 1.83 0.54 3.87 1.14 3.11 0.68 3.55 1.15

Und Select 0.17 0.06 0.17 0.06

PhD Med -0.23 0.17 -0.23 0.17

PhD Prest -0.03 0.09 -0.03 0.09

Cumul. Art. 0.07 0.01 0.07 0.01

N 301 301 301 301

LL -529.16 -529.16 -505.23 -505.23

31



Table 3: Comparison of Models Relaxing Proportional Hazard

Mplus Stata

Est SE Est SE

�1 / int 9.38 5.59 -9.38 5.59

�2 / y2 5.63 3.81 3.75 6.76

�3 / y3 4.95 1.21 4.43 5.71

�4 / y4 1.28 0.69 8.10 5.62

�5 / y5 2.74 0.77 6.64 5.63

�6 / y6 1.94 0.77 7.44 5.63

�7 / y7 2.36 0.95 7.02 5.66

�8 / y8 3.17 1.20 6.21 5.71

�9 / y9 5.44 1.86 3.94 5.88

�10 / y10 4.68 1.93 4.70 5.90

PhD Med -0.21 0.17 -0.21 0.17

PhD Prest -0.03 0.09 -0.03 0.09

Cumul. Art. 0.08 0.01 0.08 0.01

Und. Sel. y1 / Und. Sel. 0.64 0.92 0.64 0.92

Und. Sel. y2 / Und. Sel. x y2 -0.06 0.74 -0.70 1.18

Und. Sel. y3 / Und. Sel. x y3 0.35 0.21 -0.29 0.94

Und. Sel. y4 / Und. Sel. x y4 -0.15 0.13 -0.79 0.93

Und. Sel. y5 / Und. Sel. x y5 0.23 0.13 -0.41 0.93

Und. Sel. y6 / Und. Sel. x y6 0.12 0.14 -0.52 0.93

Und. Sel. y7 / Und. Sel. x y7 0.22 0.17 -0.42 0.93

Und. Sel. y8 / Und. Sel. x y8 0.31 0.17 -0.33 0.94

Und. Sel. y9 / Und. Sel. x y9 0.64 0.33 0.00 0.97

Und. Sel. y10 / Und. Sel. x y10 0.47 0.35 -0.17 0.98

N 301 301

LL -499.63 -499.62
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Table 4: Likelihood Ratio Tests

Log Likelihood

Model relaxing proportional hazard constraint -499.62

Model with proportional hazard constraint -505.23

-2*(Model 2 LL - Model 1 LL) 11.22

df 9

Chi-square test 0.26

33



Table 5a: Descriptive Statistics

N Mean SD

Ever had sex 9914 0.82 0.38

Age 12 �rst sex 365 0.02 0.15

Age 13 �rst sex 1886 0.05 0.22

Age 14 �rst sex 3560 0.10 0.29

Age 15 �rst sex 5251 0.17 0.37

Age 16 �rst sex 6277 0.24 0.43

Age 17 �rst sex 6193 0.27 0.44

Age 18 �rst sex 5342 0.33 0.47

Age 19 �rst sex 3616 0.22 0.41

Age 20 �rst sex 2544 0.19 0.39

Age 21 �rst sex 1780 0.21 0.41

Age 22 �rst sex 1088 0.12 0.33

Age 23 �rst sex 675 0.12 0.33

Age 24 �rst sex 307 0.10 0.31

Age 25 �rst sex 77 0.09 0.29
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Table 5b: Descriptive Statistics

N Mean SD

Age at wave 1 9914 15.17 1.66

Female 9914 0.54 0.50

Black 9914 0.20 0.40

Hispanic 9914 0.08 0.27

Asian 9914 0.08 0.27

Other race 9914 0.10 0.29

Mother�s education 9914 5.52 2.41

How often attend services 9905 2.87 1.19

How often attend yth grp 9908 2.21 1.26

How often pray 9904 3.72 1.51

How important religion 9911 3.13 1.02

Religiosity scale 9892 2.98 1.04

If you had sex:

Partner would lose respect 6078 3.30 1.10

You would feel guilty 6096 2.64 1.23

Upset your mother 6095 1.85 1.06

Friends respect you more 6119 2.31 1.04

Make you feel more attractive 6055 2.35 0.99

Feel less lonely 6062 2.45 1.03

Neg Sex Attitudes scale 6043 2.60 0.88

Pos Sex Attitudes scale 6034 2.37 0.81

35



Table 6: Model Fit Statistics for Measurement Models

N Chi-Sq df sig CFI TLI RMSEA BIC

Religiosity:

1 latent var 5980 552.20 2 0.00 0.95 0.86 0.21 534.80

2 latent vars 5980 1.71 1 0.19 1.00 1.00 0.01 -6.99

Attitudes:

1 latent var 5980 2752.53 9 0.00 0.60 0.34 0.23 2674.26

2 latent vars 5980 150.70 8 0.00 0.98 0.96 0.06 81.13

2 lat vars, cor err 5980 131.78 7 0.00 0.98 0.96 0.06 70.91
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Table 7: Parameter Estimates Using Complete Case Data (N=5980)

Model 1 Model 2 Model 3

Neg Sex Pos Sex Age First Sex

Est SE Est SE Est SE Est SE Est SE

Rel Scale -0.10 0.02

Lat Attend -0.06 0.07 -0.11 0.03 -0.02 0.02 -0.05 0.05

Lat Belief -0.11 0.08 -0.10 0.03 -0.06 0.03 -0.07 0.06

Neg Sex Scale 0.12 0.02

Lat Neg Sex 0.21 0.07 0.16 0.06

Pos Sex Scale 0.27 0.02

Lat Pos Sex 0.95 0.00 0.70 0.07

Notes

SEs are robust standard errors.

All models control for gender, race/ethnicity, and mother�s education.
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Table 8: Parameter Estimates Using Full Sample (N=9914)

Model 3

Neg. Sex Att. Pos. Sex Att. Age First Sex

Est SE Est SE Est SE

Latent attendance -0.12 0.02 -0.04 0.02 -0.04 0.05

Latent beliefs -0.09 0.03 -0.02 0.02 -0.07 0.06

Latent negative sex att. 0.19 0.06

Latent positive sex att. 0.80 0.07

Notes:

SEs are robust standard errors.

All models control for gender, race/ethnicity, and mother�s education.

Figure 1: Discrete­Time Survival Model
Represented as a Structural Equation Model
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Figure 3: Discrete­Time Survival Model
with Covariates
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Figure 4: Models for Careers of
Biochemists
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Figure 4: Models for Careers of
Biochemists

Panel B: Model with Covariates
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Figure 4: Models for Careers of
Biochemists

Panel C: Model Relaxing Proportional Hazard Odds Constraint for Undergraduate Selectivity
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Figure 5: Religiosity Models
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Figure 6: Sex Attitudes Models
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Figure 6: Sex Attitudes Models
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Figure 7: Models for Time to First Sex
Panel A: Model with Covariates (No Latent Variables)
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Figure 7: Models for Time to First Sex
Panel B: Model with Covariates (Latent Variables)
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Figure 7: Models for Time to First Sex
Panel C: Model with Covariates (Latent Variables)

Age 15

η

Age 25

Age 15 Age 25

1 1

X

Religiosity

Sex Att

44


