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Abstract 

We study prediction and error propagation in the Gompertz, logistic, and Hernes cohort diffusion models. 

We show that the linearized forms of these models can be modeled as a random walk with drift, and that 

predictions and prediction error estimates can be derived from the random walk model. We develop and 

compare different methods for deriving predictions from the underlying random walk model. We also 

develop an analytic variance estimator for the prediction variance and study its accuracy with respect to a 

Monte Carlo estimator. Simulation studies and empirical applications to first births and marriages show 

that the analytic estimator is accurate, allowing forecasters to make precise the level of "within-model" 

uncertainty that should be attached to their forecasts, a level that should be viewed as a lower-bound of 

the total uncertainty which could include departure from the model. 
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1 Introduction 

Diffusion models have proven to be useful tools in forecasting incomplete cohort experience. For 

example, Goldstein and Kenney (Goldstein and Kenney 2001) and Li and Wu (Li and Wu 2008) show 

how the Hernes model (Hernes 1972) can be used to forecast marriage rates. For fertility, it has long 

looked like the Gompertz model would be inadequate for predicting (Hoem, Madsen et al. 1981; Pollard 

and Valkovics 1992), but recent research by Goldstein (Goldstein 2008) suggests that if fit to the cohort 

rates (instead of fitting the model to period rates), the Gompertz model actually performs quite well. A 

third well known diffusion model, the logistic model, can also be used to forecast cohort experience. This 

far, however, the logistic model has received more attention in the economic literature, as it has been used 

to forecast the use of tractors (Mar-Molinero 1980), mobile telecommunications services (Gruber and 

Verboven 2001), and more generally sales and innovations (Harvey 1984; Meade and Islam 2006).  

Despite the longstanding interest in diffusion models, two fundamental questions about their use in the 

context of cohort prediction remain unanswered. First, how should the models be estimated from 

incomplete data? Second, how to estimate uncertainty in the predictions? These questions have been 

partly answered, but no synthesis has been built. In this paper we study prediction and error propagation 

in the Gompertz, logistic, and Hernes cohort diffusion models, and show that prediction and error 

propagation can be treated in a unified way: We show that the linearized forms of these models can be 

modeled as a random walk with drift, and that predictions and prediction error estimates can be derived 

from the random walk model. We develop and compare different methods for deriving predictions from 

the underlying time series model. We also develop and compare the accuracy of a closed form analytic 

estimators and Monte Carlo estimators for the prediction variance. Empirical applications to first births 

and marriages suggest that the random walk based cohort diffusion models can be highly useful in 

predicting the future experience of a cohort. 

The paper is organized as follows. In Section 2, we describe the steps needed in the time series approach 

in a heuristic way. In Sections 3-5, we show in a detailed manner how prediction and prediction error 

estimation is done in the Gompertz, Hernes and Logistic cohort diffusion models when using the time 

series approach. In Section 6 we apply the models to both simulated and real data. Section 7 discusses the 

results. The Appendix shows certain formulas which are used throughout the paper.  
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2 Overview of the time series approach 

The idea of linearizing a growth or diffusion model and fitting a time series or some other regression 

model to the linearized part is, in itself, not new. For example, Winsor (Winsor 1932) shows how the 

logistic and Gomperts models can be linearized with respect to time, and Harvey (Harvey 1984) takes the 

next step by showing how the predictions of a logistic model can be constructed from an autoregressive 

integrated moving average (ARIMA) time series model fit to the linearized part. Harvey, however, does 

not discuss the model in cohort context, and leaves also prediction intervals unestimated. Li and Wu (Li 

and Wu 2008) use the Hernes model in the cohort diffusion context, and follow Winsor and Harvey by 

linearizing the model and fitting a regression model (without autocorrelation structure) to the linearized 

part. In this paper, possible autocorrelation in the linear part is not taken into account, and the prediction 

intervals ignore the cumulating nature of errors.  

We build on prior research by providing a unified framework for time series based prediction and 

prediction error estimation in cohort diffusion models. First, let tP  denote the proportion “infected” – that 

is those who, depending on the application, have married, have had a first birth, or more generally have 

adopted the innovation. We assume that tP  depends on time t  through a monotonic increasing function 

:F  ( )tP F t= . Now 7 steps are needed to produce a time series modeling based prediction and prediction 

intervals of P  for a future time 1t + , given observations up to t . These are as follows:  

1. Find a linearization H  so that ( )t tH P g= , where g  is linear in t . This often involves taking 

derivatives and logarithms. One also has to deal with the issue that H  is often easiest to find using 

continuous time, but the observations are by necessity in discrete time.  

2. Model the linearized part tg  with an ARIMA model, such as random walk with drift which is the 

same as ARIMA(0,1,0) 

3.  Estimate the parameters of the ARIMA model using standard techniques (e.g. Hamilton 1994) 

Repeat steps 4-5 for 1,...,i k= : 

4. Predict ˆ t ig +  using the estimated ARIMA model 

5. Derive ˆt iP+  from ˆ t ig +  using the inverse of H . This, often, is less straightforward than it seems, 

because H  may be a functional, rather than a function and because H  may be defined using 
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continuous time but the observations are in discrete time. The prediction ˆt iP+  invariably involves 

the past value 1
ˆ
t iP+ − , therefore the prediction up to 

ˆ
t kP+  needs to proceed recursively.  

6. Estimate the variance of ˆt kP+ . If the ARIMA model for tg  involves differencing, one has to deal 

with fact that the shocks in tg  do not fade away but cumulate to t kP+ .  

The Sections 3-5 show how this approach can be used for the Gompertz, logistic and Hernes models. The 

Section 3 for the Gompertz model is the most detailed, since the logistic and Hernes cases are very much 

analogous to the Gompertzian case. To anticipate the results, Table 1 summarizes the model equations, 

linearizations, models for the linear part, prediction equations and analytical prediction variance 

estimators.  

Equation Chapter 0 Section 1  Equation Section (Next)  Equation Section (Next) 
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3 The Gompertz growth model 

3.1 The model 

Throughout the paper we assume observations 0 1, ,..., tP P P  and we make predictions 1 2, ,...,t t t kP P P+ + + . The 

Gompertz growth model for a proportion tP  is  

(3.1) ( )exp exptP k a bt= − −   . 

Log of the log-derivative linearizes the model to lnb a bt+ − . We use the discretization (8.2), 

1 1ln 1

2

t t t

t

d P P P

dt P

+ −−
≈ , proposed by Li and Wu (Li and Wu 2008). With this linearization we get  

(3.2) 1 11
ln ln

2

t t
t

t

P P
b a bt g

P

+ −
 −

+ − ≈ ≡ 
 

. 

We model the linear term tg  as a random walk with drift: 

(3.3) ( )21 0

1

, ~ 0,
t

t t t i t

i

g g g t N εδ ε δ ε ε σ−

=

= + + = + +∑ . 

The model parameters ( )2, εδ σ  are estimated as
3
  

(3.4) 1 1ˆ
2

tg g

t
δ − −
=

−
    and    

( )
1 2

2 1

ˆ

ˆ
1

t

i

i

g

n
ε

δ

σ

−

=

−

=
−

∑
. 

3.2 Prediction 

Predictions 1
ˆ
tP+  and 

ˆ
t jP+  are based on predictions 1

ˆˆ
t tg g δ+ = +  and ˆˆ

t k tg g kδ+ = + . We use the 

approximation (8.3), ( )1 1 10.5 t t t tP P P P+ − −⋅ − ≈ − ,  to transform g  into P . This is done as follows. First 

note that ( )exp tg  describes proportional change, which can be approximated as  

(3.5) ( ) ( )1 1 1
1

1 1
exp 1

2

t t t
t t t

t t t

P P P
g P P

P P P

+ − −
−

−
= ≈ − = − . 

Now tP  can be expressed in terms of 1tP−  and tg , and 1
ˆ
tP+  in terms of tP  and 1

ˆ
tg + :  

                                                 
3
 In (3.2), the number of observations drops from 1t +  to 1t − .  
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(3.6) 
( )
1

1 exp

t
t

t

P
P

g

−≈
−

   and   
( )

1

1

ˆ
ˆ1 exp

t
t

t

P
P

g
+

+

=
−

. 

Equation (3.6) gives the one-step ahead predictions, and applying (3.6) recursively one gets the arbitrary 

k-step ahead prediction. This method, however, will underestimate the true t kP+ . This is because we are 

using discrete data, and the growth factor ( )1ˆexp tg +  is applied to tP , instead of applying a continuous 

growth factor continuously to values between 1
ˆ
tP+  and tP . The downward bias can be reduced by splitting 

the steps into two parts, and apply the growth factor ( )ˆexp tg  to to the first part, and growth factor 

( )1ˆexp tg +  to the second part. This can be done in two steps, or one can also simply take the average of 

( )1ˆexp tg +  and ( )ˆexp tg  and apply that to tP .
4
 This holds for the first step, also for the further steps that 

are needed to produce the k-step ahead prediction ˆt kP+ . Thus we have the one-step ahead and k-step ahead 

predictions as follows:  

(3.7) 
( )

1

1

ˆ
ˆ1 exp 0.5

t

t

t t

P
P

g g
+

+

=
− ⋅ +  

   and   
( )

1

1

ˆ
ˆ

ˆ ˆ1 exp 0.5

t k

t k

t k t k

P
P

g g

+ −

+

+ + −

=
− ⋅ +  

. 

 

3.3 Prediction variance 

Here we develop an analytical and a Monte Carlo estimator for the variance ( )ˆ
t jV P+  for 1,...,j k= . 

3.3.1 An analytical variance estimator 

The analytical variance estimator is based on two approximations; first we approximate the predictions 

and then we approximate the variance using the delta method (8.4) and the Taylor approximation (8.6). 

For small ( )ˆexp t jg +  (that is large, negative ˆt jg + ) the predictions (3.7) can be approximated as  

(3.8) ( )1 1
ˆ ˆexpt t tP P g+ +≈ +    and   ( )

1

ˆ ˆexp
k

t k t t i

i

P P g+ +

=

≈ +∑ . 

These predictions are linear in ( )ˆexp t jg + , so their variance is easier to derive than the variance of the 

predictions (3.7). This is done as follows:  

                                                 
4
 This is not exactly the same as dividing the step into two parts and applying two separate growth factors to each part, but 

empirically the difference is so small that one does not need to worry about it.  
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3.3.1.1 One-step ahead prediction variance 

For the one-step ahead prediction ( )1 1
ˆ ˆexpt t tP P g+ += +  the variance is  

(3.9) ( ) ( )1 1
ˆ ˆexpt tV P V g+ +=     

because tP  is a constant. The delta method approximation for ( )1ˆexp tV g +    is  

(3.10) ( ) ( )
( )

2

1

1 1

ˆexp
ˆ ˆexp

t

t t

d E g
V g V g

dx

+

+ +

   =    
  

. 

Now  

(3.11) ( ) ( ) ( )
2 2 2

1 1 1
ˆˆ

t t t t tV g E g g E εδ δ ε ε σ+ + += + − − − ≈ =   

and  

(3.12) 
( )

( ) ( )
1

1

ˆexp
ˆexp exp

t

t t

d E g
E g g

dx
δ

+

+

   = = +   . 

Plugging (3.11) and (3.12) into (3.10) we get the variance of the one-step ahead prediction: 

(3.13) ( ) ( )2

1
ˆ exp 2 2t tV P gεσ δ+ = + . 

The variance (3.13) is estimated by replacing 2

εσ  and δ  by their estimators (3.4).  

3.3.1.2 k-step ahead prediction variance 

The variance of ( )
1

ˆ ˆexp
k

t k t t i

i

P P g+ +

=

= +∑  is a double sum of the covariances:  

(3.14) ( ) ( ) ( )
1 1

ˆ ˆ ˆexp cov exp ,exp
k k k

t i t i t j

i i j i

V g g g+ + +

= = =

   =    
∑ ∑∑ . 

The diagonal elements of the covariance matrix can be estimated using the delta method as   

(3.15) ( ) ( )2ˆexp exp 2 2t i tV g i g iεσ δ+ = +   . 
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Simulation experiments indicated that the off-diagonal elements ( ) ( )ˆ ˆcov exp ,expt i t jg g+ +
 
   are also 

important. The reason for this is the double-counting of the errors: innovations up to i  are both in t ig +  

and t jg + , provided j i≥ . These off-diagonal elements can be approximated using the Taylor method as 

(3.16) ( ) ( ) ( ) ( ) ( )2ˆ ˆcov exp ,exp min , exp expt i t j t tg g i j g i g jεσ δ δ+ +
  ≈ ⋅ ⋅ + +  . 

The interpretation for (3.16) is the following. There are ( )min ,i j  common innovations in t ig +  and t jg + , 

each contributing 2

εσ  to the covariance, and the exponential terms of the form ( )exp tg iδ+  which are 

present both in the diagonal terms (3.15) and in the off-diagonal terms (3.16) essentially scale the 

covariance proportionally to the size of the terms ( )ˆexp t jg + . Note that for i j= , the equation for off-

diagonal elements (3.16) reduces to the equation (3.15) for the diagonal elements.  

The k-step ahead prediction variance is obtained by plugging (3.15) and (3.16) into (3.14): 

(3.17) ( ) ( ) ( ) ( )2

1 1

ˆ exp 2 min , exp
k k

t k t

i j

V P g i j i jεσ δ+

= =

= ⋅ +  ∑∑ . 

Taylor approximation (8.6) applied directly to (3.14) would deliver the same estimator (3.17). 

The estimators (3.13) and (3.17) reveal important facts about the nature of prediction uncertainty in cohort 

diffusion models. First, the factor 2

εσ  shows that the prediction variance grows linearly with the variance 

of the error term ε . Second, the factor ( )exp 2 tg  implies that if the predictions are made late (so t  is 

large and tg  negative and large), the prediction variance is small. If the predictions are made early, then t  

is small, tg  is less negative, and the variance is large. Finally, the term ( )exp δ  in (3.13) and (3.17) 

implies that if the drift in g  is large (the drift is always negative) and growth takes place soon, the 

prediction variance is small. If, however, growth is slow and the drift is closer to 0, the prediction 

variance is large. These remarks apply also to the logistic and Hernes models.  

3.3.2 Monte Carlo variance estimator 

In the Monte Carlo variance estimation, we simulate 1,000K =  sample paths 1 2, ,...,t t t kg g g+ + +  using the 

formula  
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(3.18) ( )2
1

ˆ ˆ, ~ 0,
j

t j t i i

i

g g j N εδ ε ε σ+

=

= + +∑ . 

These simulated paths of g  are transformed to P  using the prediction equation (3.7). The variance is then 

directly calculable from the 1,000 predictions, as are the non-parameteric confidence intervals. The Monte 

Carlo point estimate for t kP+  is the median of the predictions.  

Table 1 summarizes the important results of the Section 3: The Gompertz model. 

Equation Section (Next) 
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4 The Logistic growth model 

4.1 The model 

The logistic growth model for a proportion tP  is  

(4.1) 
( )1 exp

t

a
P

a bt
=

+ −
. 

The model is linearized as 
2

1
ln lnt

t

dP
b a bt

dt P

 
= + − 

 
. We use discretization (8.1), 1 1

2

t t tdP P P

dt

+ −−
≈ , so  

(4.2) 1 1

2

1
ln ln

2

t t
t

t

P P
b a bt g

P

+ −
 −

+ − ≈ ≡ 
 

. 

As in (3.3), the tg  is modeled as a random walk with drift and ( )2, εδ σ  is estimated with (3.4).  

4.2 Prediction and variance estimation 

Using the approximation  

(4.3) ( )1 1
12 2

1

1 1

2

t t
t t

t t

P P
P P

P P

+ −
−

−

−
≈ −  

we get equations for the predictions (Harvey (1984) presents similar results): 

(4.4) ( )2

1 1
ˆ ˆexpt t t tP P P g+ += +    and   ( )2

1 1
ˆ ˆ ˆ ˆexpt k t k t k t kP P P g+ + − + − += + . 

These, however, underestimate the true t kP+  because of the same reasons analogous equations 

underestimated t kP+  in the Gompertz case: The growth factor ( )1ˆexp tg +  is applied to tP , instead of 

applying a continuous growth factor continuously to values between 1
ˆ
tP+  and tP . We use the same 

technique to reduce the bias as we did in the Gompertz case, that is to split the steps into two parts, and 

apply the growth factor ( )ˆexp tg  to to the first part, and growth factor ( )1ˆexp tg +  to the second part. We 

do this by taking the mean of the two successive growth factors and applying that to tP . The same holds 

for predictions that go further. Thus the one-step ahead and k-step ahead predictions are 

(4.5) ( )2

1 1
ˆ ˆexp 0.5t t t t tP P P g g+ += + ⋅ +      and   ( )2

1 1 1
ˆ ˆ ˆ ˆ ˆexp 0.5t k t k t k t k t kP P P g g+ + − + − + + −= + ⋅ +   . 

The prediction variance for the logistic model is analogous to the prediction variance for the Gompertz 

model, the difference being that in the logistic model we have multipliers 2ˆ
t iP+  and 

2ˆ
t jP+  entering the 

covariance term (3.16). Therefore the approximation for the covariances is  
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(4.6) ( ) ( ) ( ) ( ) ( )2 2 2 2 2ˆ ˆ ˆ ˆˆ ˆcov exp , exp exp 2 min , expt i t i t j t j t t i t jP g P g g i j i j P Pεσ δ+ + + + + +
  ≈ ⋅ ⋅ +     

and the estimator for the variance of a k -step ahead prediction is  

(4.7) ( ) ( ) ( ) ( )2 2 2

1 1

ˆ ˆ ˆexp 2 min , exp .
k k

t k t t i t j

i j

V P g i j i j P Pεσ δ+ + +

= =

= ⋅ + ⋅  ∑∑  

Monte Carlo variance estimation for the logistic model is the same as it is for the Gompertz model.  

Table 1 summarizes the important results of the Section 4: The Logistic growth model. Equation Section (Next) 
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5 The Hernes growth model 

The Hernes growth model for a proportion tP  is  

(5.1) 
0

0

1

1
1 exp

ln

t t
P

P a ab

P b

=
 − −

+  
 

. 

.The model is linearized as 
( )

1
ln ln

1

t

t t

dP
a bt

dt P P

 
= +  − 

. We use discretization (8.1), so  

(5.2) 
( )

1 1 1
ln ln

2 1

t t
t

t t

P P
a bt g

P P

+ −
 −

+ ≈ ≡  − 
. 

The tg  is modeled as a random walk with drift as in (3.3), and ( )2, εδ σ  is estimated with (3.4).  

5.2 Prediction and variance estimation 

Li and Wu (2008) propose the equation 

(5.3) 

1

1ˆ
1

ˆ1 exp exp

t k k
t

t k

i tt

P
P

g
P

+

+

= +

=
 −  

+ −  
  
∑

 

for predicting t kP+ . In our simulation experiments, however, (5.3) severely underestimated t kP+  for large 

k . Better predictions were obtained using recursively any of the following three equations: 

(5.4) 

( )1

1

1ˆ
ˆ1

ˆ1 exp exp
ˆ

t k

t k
t k

t k

P
P

g
P

+

+ −
+

+ −

=
−

+ −  

, 

(5.5) ( ) ( )1 1 1
ˆ ˆ ˆ ˆ ˆ1 expt k t k t k t k t kP P P P g+ + − + − + − += + − , 

(5.6) ( ) ( )2

1
ˆ ˆ ˆexp 1 expt t k t t k t kg P g P P+ + + −+ − =   . 

The equation (5.4) is a simple modification of Li and Wu’s equation (5.3), the difference being that in 

(5.3), one jumps to the prediction ˆt kP+  from observation tP , whereas in (5.4) one proceeds recursively 

using predictions 1 1
ˆ ˆ,...,t t kP P+ + − . The equation (5.5) is obtained using the approximation 

(5.7) 
( )

( ) ( )
( )

1 1
1

1 1

1 1
exp

2 1 1

t t
t t t

t t t t

P P
g P P

P P P P

+ −
−

− −

−
= ≈ −

− −
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and solving rP  in terms of 1tP−  and tg . The quadratic equation (5.6) arises from the approximation  

(5.8) 
( )

( ) ( )
( )

1 1
1

1 1
exp

2 1 1

t t
t t t

t t t t

P P
g P P

P P P P

+ −
−

−
= ≈ −

− −
. 

Simulation experiments indicated that the prediction equations (5.4)-(5.6) produce almost identical 

results, even for large k , and estimate t kP+  markedly better than (5.3). Because of its simplicity and 

linearity in ( )exp tg , we use equation (5.5)  as the basis for predictions. We, however, correct the 

downward bias in (5.5) that arises from the fact that the growth factor ( )1ˆexp tg +  is applied to tP , instead 

of applying a continuous growth factor continuously to values between 1
ˆ
tP+  and tP  by splitting the step 

into two parts and applying the growth factor ( )ˆexp tg  to to the first part, and growth factor ( )1ˆexp tg +  to 

the second part. We do this by taking the mean of the two successive growth factors and applying that to 

tP . The same holds for predictions that go further. Thus the k-step ahead prediction is 

(5.9) ( ) ( )1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ1 exp 0.5t k t k t k t k t k t kP P P P g g+ + − + − + − + + −= + − ⋅ +   . 

The prediction variance for the Hernes model with predictions ( ) ( )1 1 1
ˆ ˆ ˆ ˆ ˆ1 expt k t k t k t k t kP P P P g+ + − + − + − += + −  is 

similar to the prediction variance for the Gompertz model. The difference is that we have multipliers 

( )ˆ ˆ1t i t iP P+ +−  and ( )ˆ ˆ1t j t jP P+ +−  which enter the covariance term (3.16). Therefore the approximation for 

the covariances is  

(5.10) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2

ˆ ˆ ˆ ˆˆ ˆcov 1 exp , 1 exp

ˆ ˆ ˆ ˆexp 2 min , exp 1 1

t i t i t i t j t j t j

t t i t i t j t j

P P g P P g

g i j i j P P P Pεσ δ

+ + + + + +

+ + + +

 − −
 

≈ ⋅ ⋅ ⋅ + ⋅ − −  

 

and the estimator for the variance of a k -step ahead prediction is  

(5.11) ( ) ( ) ( ) ( ) ( ) ( )2

1 1

ˆ ˆ ˆ ˆ ˆexp 2 min , exp 1 1
k k

t k t t i t i t j t j

i j

V P g i j i j P P P Pεσ δ+ + + + +

= =

= ⋅ + ⋅ − −  ∑∑ . 

Monte Carlo variance estimation for the Hernes model is the same as it is for the Gompertz model.  

Table 1 summarizes the important results of the Section 5: The Hernes growth model. Equation Section (Next) 
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6 Simulation experiments and empirical applications 

In this section we put the Gompertz, logistic and Hernes models described in Sections 3-5 into work. 

We start with simulation experiments where the data generating process can be controlled (Section 6.1), 

and then apply the methods to real data to predict marriage rates in France (Section 6.2) and first births 

in the Netherlands (Section 6.3). 

6.1 Simulation experiments 

We construct artificial data sets using the Gomperts, logistic, and Hernes models formulations. The 

values tP  are generated from tg  using the model equations (line 1_ of Table 1. The process tg  is 

subject to shocks: tg  is a random walk with drift δ  and shock variance 2

εσ . Thus the shocks tε  affect 

both the linearized part tg  and the proportion tP , and as the model for tg  is a random walk with drift, 

these shocks cumulate over time.  

For each of the three models, Gompertz, logistic, and Hernes, we generate data 0 1 35, ,...,P P P  using the 

process described above. This data is then “observed” up to ages 16, 21, and 26. Using the observed 

data (up to age 16, 21, or 26), we fit the right models (Gompertz model for the Gompertz data, logistic 

model for the logistic data, and Hernes model for the Hernes data) and predict the values up to age 35. 

We also estimate the prediction variances, confidence intervals, and coefficients of variation (defined as 

standard error divided by estimate) using both the analytical variance estimator and the Monte Carlo 

based estimator. When using the Monte Carlo estimator, we calculate confidence intervals non-

parametrically, using the percentiles of the prediction distribution rather than multiples of standard error 

as the basis for confidence interval.  

Let us first consider the Gompertz case. Figure 1 shows the predicted values, confidence intervals and 

summary statistics for the variance estimators when data is observed up to age 16 (Panel A), age 21 

(Panel B), and age 26 (Panel C). The left hand side of each panel shows the predictions and 

corresponding confidence intervals. Here the black line is the true data, blue lines represent the results 

obtained using analytical formulas, and red lines represent the Monte Carlo based estimates. The right 

hand side of each panel shows summary measures of the variance estimators; again the blue lines 

represent the analytical estimators and red lines represent the Monte Carlo estimators.  

The left hand side of the Panels A-C of Figure 1 show that the point estimates are quite close to the true 

data, and the later one starts predicting, the smaller the errors. When prediction starts at age 16, the 
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error at age 35 is 3 percentage points; if data is observed up to age 21, the error at age 35 is less than 2 

percentage points, and is data is observed up to age 26, the error at age 35 is almost zero. From the 95% 

confidence intervals one can see that the analytical confidence interval estimator very closely matches 

the Monte Carlo estimator, which in our case should be very accurate since it uses the same model 

(albeit estimated, not true parameters) as the data generating process. The right hand side of the Panels 

A-C confirm that the two variance estimators produce very similar results: the lengths of the confidence 

intervals are almost equivalent, and so are the coefficients of variation and standard errors (SEs).  

Figure 2 shows similar graphs for the logistic case. Again, the point estimates (left hand side of Panels 

A-C) are reasonably close to the true data, and the prediction errors get smaller as more data is 

observed. When prediction starts at age 16, the maximum error is 2 percentage points, if data is 

observed up to age 21, the error at age 35 is about 1 percentage point, and if data is observed up to age 

26, the maximum error is essentially zero. The estimated variances and lengths of confidence intervals 

are slightly larger for the Monte Carlo estimator than for the analytical estimator (right hand side of 

Panels A-C), but in qualitative terms the estimated magnitude of uncertainty is still approximately the 

same.  

Figure 3 shows the simulation results for the Hernes model. These are very much in line with what was 

observed for the Gompertz and logistic models: The point estimates are close to the true data, the errors 

get smaller as more data is observed, and the two variance estimators produce similar estimates.  

Figure 4 represents the results shown in Figures 1-3, but zooms in to the predictions so it is easier to see 

how well the random walk based prediction method and the uncertainty estimators perform. The point 

estimates show clearly that the random walk based predictions are useful in forecasting, and that the 

error is smaller if more data is observed. The Figure 4 also confirms what was observed in Figures 1-3: 

The analytical variance estimator track closely the Monte Carlo estimator, giving a precise sense of the 

within-model uncertainty. 

6.2 Empirical application I: French first marriages and the Hernes model 

In prior research the Hernes model has been used to predict proportion married within in cohort 

(Goldstein and Kenney 2001; Li and Wu 2008). We do the same here, with French data. We fit the 

Hernes model to 1950 and 1965 cohorts. For both cohorts, we estimate the parameters of the underlying 

random walk with drift model using data up to age 23, and then predict the marriage rates up to age 50. 

Results for the Hernes model for this cohort are shown in Figue 5, Panel A. The left hand side figure of 

the Panel A shown the true data and predictions (analytical and Monte Carlo based) for the whole age 
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range starting from age 14 up to age 50. The middle figure of Panel A zooms into the predictions. This 

figure shows that the Hernes model produces reasonable predictions for the future experience of the 

1950 cohort when data is observed only up to age 23: The maximum prediction error for the analytical 

estimator is only 2.2 percentage points. The difference between the predictions and reality emerge quite 

late, after age 33, implying that at these ages the reality may not be exactly Hernesian. The right hand 

side of Panel A shows that the analytical and Monte Carlo estimators for variance and confidence 

intervals produce again results which are very close to each other.  

Panel B of Figure 5 shows the results for the 1965 cohort. Again, we have used data up to age 23 when 

estimating the model, and have then used this estimated random walk with drift model to produce 

predictions and prediction errors. The left hand figure and middle figure of Panel B show that the 

Hernes model predicts reasonably well the cohort’s experience up to age 42. The true rates at these 

aegs, however, seem to be increasing so rapidly that by age 50, the reality may be out of the estimated 

95 % confidence interval. The right hand side figure of Panel B shows that the magnitude of the 

uncertainty in predictions is slightly larger according to the Monte Carlo estimator than the analytical 

estimator.  

6.3 Empirical application II: Dutch first births and the Gompertz model 

Goldsteins recent results (Goldstein 2008) indicate that the Gompertz model may work well in 

predicting first birth and childlessness if applied to cohort data. Here we fit the Gompertz model to 

Dutch data, and predict the proportion not childless for 1950 and 1965 cohorts. Experiments with the 

Gompertz model suggested that the proportion should be close to 2/3 before reasonable fit can be 

expected. Therefore we use data up to age 28 for the 1950 cohort (by this age 66 % of the cohort had 

had a first birth) and for the 1965 cohort we use data up to age 34 (by this age 67 % of the cohort had 

had a first birth.  

Results for the Gompertz model for the cohort 1950 are shown in Figue 6, Panel A. The left hand side 

figure of the Panel A shown the true data and predictions (analytical and Monte Carlo based) for the 

whole age range starting from age 15 up to age 50. The middle figure of Panel A zooms into the 

predictions. This figure shows that for this cohort, the Hernes model produces very accurate predictions 

(maximum error in the predictions is 1.1 percentage points) and that the analytical and Monte Carlo 

estimators give a similar picture on the uncertainty in the predictions.  

Panel B of Figure 6 shows the results for the 1965 cohort. The analytical and Monte Carlo estimators 

produce almost equivalent results in every sense, but the worrying thing is that the true data is outside 
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the 95 % confidence intervals. We have highlighted this fact by bolding the true data. It is, of course, 

true that one should expect to see the true data be outside the 95 % confidence interval on average every 

twentieth time, so it may be that the model is right. A potentially more likely explanation is that the 

cohort 1965 has pushed their childbearing so late that the behavioral assumptions on which the 

Gompertz model is built are not anymore the only driving forces behind tP . At ages above 30 biology 

inevitably starts to enter the equation – more explicitly, fecundity starts to decline – and this declining 

fecundity may be the factor explaining to high forecasts. This issue has been dealt with in more detail in 

Goldstein (2008).  
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7 Discussion 

In this paper we studied the prediction and error propagation in the Gompertz, logistic, and Hernes 

cohort diffusion models. We showed that the linearized forms of these models can be modeled as a 

random walk with drift, and that predictions and prediction error estimates can be derived from the 

random walk model. We compared different methods for deriving predictions from the underlying 

random walk model, and showed that it is important to correct for the discretization error in 

predictions.  

We also developed and compare the accuracy of a closed form analytic estimators and Monte Carlo 

estimators for the prediction variance. Simulation studies and empirical applications to first births and 

marriages showed that the estimates are useful in quantifying uncertainty in the predictions: They give 

a precise sense of the within-model error, and allow the forecasters a new ability to characterize the 

uncertainty. When the model assumptions hold less than perfectly, as in the case of first births of the 

Dutch 1965 cohort whose old-age fertility seems to be constrained by extra-model factors such as 

biology (Goldstein 2008), the random walk based estimates give a lower bound for the total 

uncertainty. In future work, we will use historical data for first births and marriages to compare the 

relative importance of the within-model error to the total error. If the within-model error accounts for a 

large fraction of the total error, then we will recommend our methods as useful gages of the uncertainty 

in forecasts. If, however, the within-model error is small, then we would recommend characterizing our 

methods as providing a lower-bound on uncertainty, to which a substantial amount of model 

specification uncertainty would need to be added. 

Equation Section (Next)Equation Section (Next) 
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Appendix. Often used equations  

Some identities, approximations and discretizations which are used often: 

(8.1) Discretization 1: 1 1

2

t t tdP P P

dt

+ −−
≈  

(8.2) Discretization 2: 1 1ln 1

2

t t t

t

d P P P

dt P

+ −−
≈  

(8.3) Approximating change: 1 1
1

2

t t
t t

P P
P P+ −

−

−
≈ −  

(8.4) The delta method: ( ) ( )
( )

2

XdH
V H X V X

dX

µ 
≈    
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(8.5) Variance of a sum: ( )

( ) ( )

1 1 1

1 1
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k k k

i i j

i i j

k k k

i i j

i i j i
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= = =

= = ≠

 
= 

 

= +

∑ ∑∑
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(8.6) Taylor approcimation:  ( )
( ) ( )

( )
1 1 1

cov ,
ji

k k k
i Xi X

i i i j

i i j i j

dfdf
V f X X X

dX dX

µµ
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Figure 1. Simulation results, Gompertz model. ANALYTICAL=BLUE, MONTE CARLO=RED  

Panel A. Predictions up to age 35 given observations 0-16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Panel B. Predictions up to age 35 given observations 0-21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel C. Predictions up to age 35 given observations 0-26 
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Figure 2. Simulation results, logistic model. ANALYTICAL=BLUE, MONTE CARLO=RED  

Panel A. Predictions up to age 35 given observations 0-16 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 Panel B. Predictions up to age 35 given observations 0-21 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 Panel C. Predictions up to age 35 given observations 0-26 
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Figure 3. Simulation results, Hernes model. ANALYTICAL=BLUE, MONTE CARLO=RED  

Panel A. Predictions up to age 35 given observations 0-16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B. Predictions up to age 35 given observations 0-21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Panel C. Predictions up to age 35 given observations 0-26 
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Figure 4. Simulation results, Gompertz, Logistic and Hernes models.  

Predictions using ages 0-16 (left) and 0-26 (right). Same results as in Sections 7.1-7.3, 
but zoomed.  
 
ANALYTICAL = BLUE and MONTE CARLO = RED.  
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