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Multivariate Decomposition for Hazard Rate Models 

 

Abstract 

 We develop a regression decomposition technique for hazard rate models, where 

the difference in observed rates is decomposed into components attributable to group 

differences in characteristics and group differences in effects. The baseline hazard is 

specified using a piecewise constant exponential model, which leads to convenient 

estimation based on a Poisson regression model fit to person-period, or split-episode data. 

This specification allows for a flexible representation of the baseline hazard and provides 

a straightforward way to introduce time-varying covariates and time-varying effects. We 

provide computational details underlying the method and apply the technique to the 

decomposition of the black-white difference in first premarital birth rates into 

components reflecting characteristics and effect contributions of several predictors, as 

well as the effect contribution attributable to race differences in the baseline hazard.
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Multivariate Decomposition for Hazard Rate Models 

 

Introduction 

 Hazard rate models have been used by social researchers to study fertility, 

mortality, job mobility, and other processes involving transitions from one state to 

another over time. Interest generally focuses on how rates respond to changes in 

individual and structural characteristics or how these factors shape differences in rates 

across social groups. Understanding the sources of group differences in rates can inform 

policy makers and scholars alike about the impact of compositional differences across 

groups and the effects of group differences in returns-to-risk associated with certain 

individual-level and structural characteristics. Multivariate decomposition analysis is an 

appropriate tool for this purpose.  

 Multivariate decomposition is widely used in social research to quantify the 

contributions to group differences in average predictions from multivariate models. The 

technique utilizes the output from regression models to parcel out components of a group 

difference in a statistic, such as a mean or proportion, which can be attributed to 

compositional differences between groups (i.e., differences in characteristics or 

endowments) and to differences in the effects of characteristics (i.e., differences in the 

returns, coefficients, or behavioral responses). These techniques are equally applicable 

for partitioning change over time into components attributable to changing effects and 

changing composition. 

 Decomposition techniques for linear regression models have been used for many 

decades in sociological research. This heterogeneous collection of techniques is more 
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generally referred to as regression standardization (Althauser and Wigler 1972, Duncan 

1969, Duncan, Featherman and Duncan 1968, Coleman and Sorenson 1970, Coleman and 

Blum 1971, Coleman, Berry, and Blum 1971, Winsborough and Dickinson 1971).  

Demographic standardization and decomposition techniques—generally referred to as 

component analysis—have a much longer history, and were formally developed by 

Kitagawa (1955) and generalized by Das Gupta (1993).  This technique is also known as 

“shift-share” analysis, and has been used to decompose differences in rates and inequality 

measures (see, e.g., Shorrocks 1980; 1982, Williams 1991). Unlike regression-based 

approaches that rely on individual-level observational data, component and shift-share 

analysis utilize aggregate data, often in the form of published tables.  Oaxaca (1973) and 

Blinder (1973) are usually credited with introducing regression decomposition in the 

econometric literature in the early 1970’s. Although their methods are formally identical 

to those developed by sociological methodologists and demographers, the technique has 

become more commonly known as Oaxaca-Blinder, Oaxaca, or Blinder-Oaxaca 

decomposition.  

  Regression decomposition has been extended to nonlinear models including:  

probit (Gomulka and Stern 1990), logit (Even and Macpherson 1993, Fairlie 2005, 

Nielson 1998, Yun 2005a), and count models (see e.g., Bauer et al. 2007; Heitmueller 

2004; Park and Lohr 2008). For linear regression, logit, and count models, the observed 

difference in group means, proportions, or counts (i.e., a difference in the “first moment”) 

is additively decomposed into a characteristics (or endowments) component and a 

coefficient (or effects) component. It should be noted that in any given application a 
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researcher may be interested in one or the other of these components, such as in the 

portion of the total differential that could be attributed to compositional differences 

between groups, or to the change in characteristics over time for a single group (see e.g., 

Evan and Macpherson 1993 and Nielsen 1998).1   

  The rationale for extending multivariate decomposition to rate models is 

motivated by considering parallels with traditional approaches along with the 

conveniences achieved by adopting the more widely used regression-based 

decomposition techniques. The traditional demographic approach of component analysis 

is a form of decomposition that seeks to partition a difference in rates into components 

due to compositional differences between groups and to group differences in rates 

(Kitagawa 1955).  Aggregate data are required for traditional component analysis, which 

has an advantage insofar as analysis can be carried out based on published data tables 

(see, e.g., Smith, Morgan, and Koropeckyj-Cox 1996). However, the increased 

complexity of method when extended to more than a few variables is a disadvantage.  

Given the limitations of the traditional approach and the advantages of carrying out 

analysis using individual-level observational data, we develop a convenient regression-

based method for decomposing differences in rates utilizing results from multivariate 

models. This approach provides a link between the traditional demographic approach of 

multiple component analysis for differences in rates and recent regression-based 

decomposition approaches.  

                                                 
1 It is also possible to apply a difference in differences approach by combining decompositions across 
groups over time into a single decomposition. 
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 Given the widespread use of hazard rate models in applied research in a variety of 

disciplines, as well as longstanding interests in understanding the sources of group 

disparities and changes over time, extending the regression decomposition to hazard rate 

models is warranted. This paper develops a multivariate decomposition technique for 

proportional hazard rate models that are specified with a piecewise constant baseline 

hazard. This approach is flexible in that it can accommodate arbitrary forms of time 

dependence in the baseline hazard as well as nonproportional covariate effects. The 

decomposition is based on a generalized linear model of the same form as the logit, probit, 

and loglinear models for which software has been developed and extensions may be 

easily implemented. However, complexities are introduced that are not present in other 

regression decomposition methods.  

 In this paper we discuss refinements to the Oaxaca-Blinder decomposition method 

that lead to a practical approach for multivariate decomposition of a difference in rates. 

Section 1 reviews the standard Oaxaca-Blinder decomposition. Section 2 discusses the 

specification of the hazard rate model and the set up for the multivariate decomposition 

of rates. Section 3 discusses the detailed (covariate by covariate) decomposition, and 

Section 4 discusses sampling variability of the estimates. Section 5 provides an 

illustrative example, and Section 6 provides a discussion of extensions and limitations of 

the technique. 
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1. Oaxaca-Blinder Decomposition 

 The Oaxaca-Blinder technique is the most familiar and widely used 

decomposition technique for linear models. The approach has been applied in research on 

wage differentials with the goal of understanding the relative roles played by group 

differences in levels of certain characteristics and group differences in the effects of those 

characteristics on wage differentials. For example, it is often argued that the portion of 

the wage differential that cannot be accounted for by group differences in characteristics 

is the result of labor market discrimination or differences in the returns to human capital 

factors such as education or job experience, and differences in unmeasured factors. 

 Oaxaca-Blinder regression decomposition begins with a linear model estimated 

separately for two groups, or for one group at two time points, indexed by j, 

    ˆ 1,2,ij ij jy j′= =x b     (1) 

where ˆijy denotes the fitted value of y for the ith individual in the jth group, ijx is a 

collection of measured characteristics for that individual (a 1K × vector)—including a 

constant term—and jb  is the set of estimated regression coefficients (a 1K ×  vector).  

The difference in average predictions can be partitioned into the sum of two components 

as2, 

   1 2 1 2 1 1 2 2 1 2( )ˆ ˆ )(y y y y ′ ′= − +− = − −b x x x b b    (2) 

The first component reflects the contribution to the total differential due to group 

differences in the mean values of x , holding the effects constant at group 1 levels. This 

                                                 
2 The difference is often decomposed into the sum of 3 components as 

1 1 2
( )E ′= −b x x ,  

1 1 2
( )C ′= −x b b , 

and  the interaction 
12 1 2

( ) ( )′= − −I b b x x . 
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component is called the explained component, or endowment or characteristics effect, 

which is generally denoted byE . The second component reflects the portion of the 

differential due to group differences inb , holding the mean value of characteristics 

constant at group 2 levels, which is generally denoted by C . This component is called the 

unexplained component or coefficients effect.  An equivalent decomposition, albeit with 

a change of sign, results from switching the roles of the comparison (group 1) and the 

reference group (group 2). In practice, both sets of results are reported or the results from 

the two separate decompositions are averaged. It is also possible to base the 

decomposition on results from various forms of pooled regression models (see, e.g., Jann 

2008 for a review).  

 In addition to a decomposition of the overall difference, we are often interested in 

the unique contribution of each covariate to the overall difference, or the detailed 

decomposition. For example, if groups differ on levels of education and returns to 

education, it would be desirable to isolate the distinct contributions to the total 

differential attributable to differences in levels of, and returns to, education along with 

the unique contributions of the other predictors in the model.   

 The Oaxaca technique is applicable when group differences in sample means or 

changes in sample means over time are the focus of inference. However, many socio-

demographic outcomes involve differences in predicted rates or proportions estimated 

from nonlinear response models. It is well known that the usual Oaxaca method of 

mean/coefficient substitution is not strictly applicable to nonlinear response models, 

hence the recent interest in extending the method to this class of models.  Moreover, for 
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nonlinear response models, the results from the detailed decomposition are sensitive to 

the order in which variables enter the decomposition. Various methods have been 

proposed to overcome this dependency, including: averaging over all possible orders of 

covariate replacement (Fairlie 2005) and by determining the relative contribution of each 

variable to each component using a set of appropriately constructed weights (Even and 

Macpherson 1993, Nielson 1998, Yun 2005a). 

 This paper builds on previous research by Even and Macpherson (1993) and 

Nielsen (1998), who extend the Oaxaca-Blinder approach to binary response models.  

These methods, as well as several innovative extensions, have been developed in a more 

systematic way by Yun (2004), who addressed several weaknesses in past approaches to 

multivariate decomposition of nonlinear response models (see e.g., Fairlie 2005). Yun’s 

estimator is simple to calculate and its sampling distribution can be obtained using 

asymptotic theory (see e.g., Yun 2005a).   

 

2. Regression Decomposition of a Difference in Rates 

 We follow the logic used in previous research on multivariate decomposition of 

binary response models by introducing modifications for rate models. As an illustrative 

example, we decompose the observed difference in premarital birth rates for non-

Hispanic blacks and whites using data from the 1979 cohort of the National Longitudinal 

Survey of Youth (NLSY). We define the empirical rate in the conventional way as the 

number of events divided by the total amount of exposure to risk. Let id  be a binary 
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variable coded 1 if an event occurs for individual i at age it , and 0 otherwise (i.e., it  is 

right censored).  The observed rate can be expressed as /i id tr =∑ ∑ .  The black-white 

difference in rates is expressed as 

    ( ) ( )B W iB B iW Wr r F F′ ′− = −x b x b ,   (3) 

where the indices B and W denote the higher-risk (non-Hispanic black) and lower-risk 

(non-Hispanic white) group, respectively, and  ( )ij jF ′x b , is computed as 

    1 1

1 1

( )

( ) ,

j ij

j ij

N n

ilj j

i l
j ij j N n

ilj

i l

F

r F

t

= =

= =

′

′= =

∆

∑∑

∑∑

x b

x b    (4) 

where  

  0( ) exp( ) { , }, ( 1, , )ilj j ilj lj ilj j ijF j W B l n′ ′= Λ = Λ ∈ = …x b x b  (5) 

is the estimated cumulative, or integrated, hazard  associated with the ith individual in the 

lth time interval from a piecewise constant exponential hazard rate model. We can view 

iljΛ as the expected number of events experienced by the ith individual in the lth interval 

of exposure to risk, assuming a time-homogeneous Poisson process with rate iljλ that is 

observed until either a first event occurs or the sub-interval of time has elapsed without 

the event occurring (see, e.g., Aitken and Clayton 1980, Barlow and Proschan 1975, 

Holford 1980).  For the (piecewise constant) exponential model, the total number of 

events in group j equals the sum of the estimated integrated hazards. That is,   

   0

1 1 1

exp( ), { , }
= = =

′= Λ ∈∑ ∑∑
j j ijN N n

ij lj ilj j

i i l

d j B Wx b    (6) 
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 Each individual contributes ilt∆  units of exposure to the lth time interval. It 

follows that an individual’s total exposure equals the individual’s event or censoring age, 

1

ijn

ilj ij

l

t t
=

∆ =∑ .  The number and the widths of the age intervals are chosen exogenously and 

must be the same for each group. Specifically, we define a set of cut-points, 

0 1 1 2, ),[ , ), )[ ,[ ,lτ τ τ τ τ… ∞ , or pieces, for the piecewise constant model that are common to 

both groups. Then, given an individual’s event or censoring time it , we determine an 

individual’s exposure in the lth interval as, 

   

1

1 1

1

0 if  ,

if ,

if  .

i l

il i l i

l l

l

l i

l

t

t t t

t

τ

τ τ τ

τ τ τ

−

− −

−

<


∆ = − < ≤
 − >

    (7) 

 This results in in  sub-episodes of risk for individual i.  Note that the sum of the 

subinterval exposures over all individuals necessarily equals the total exposure in the 

sample, i.e., 
1 1 1

j ij jN n N

ilj ij

i l i

t t
= = =

∆ =∑∑ ∑ . Combining this with Eq. (6), we can show the 

equivalence between the exposure-averaged predicted event counts and the observed 

rates,  

   
0

1 1 1

1 1 1

exp( )

, { , }= = =

= = =

′Λ

= = ∈

∆

∑ ∑∑

∑ ∑∑

j j ij

j j ij

N N n

ij lj ilj j

i i l
j N N n

ij ilj

i i l

d

r j B W

t t

x b

.  (8) 

 For our illustrative example, we adopt a proportional hazards model with 

piecewise constant hazards over 6 age intervals, [12,16), [16,18), [18,20), [20,22), 
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[22,24), [24+), which allows time dependence in the baseline hazard by age and is similar 

to the partitioning used by Wu and Martinson (1993),  Powers (2001),  and others. It is 

convenient to parameterize the baseline log hazard separately from the structural part of 

the model by excluding the conventional intercept and including a set of dummy 

variables for the 6 age intervals, 1 6, ,i j i jD D…  and a corresponding set of parameters for 

the log baseline hazard, 1 6, ,j ja a… , which  results in the following model specification 

for the rate: 

 1 1 2 2 6 6 )exp( exp( )ilj j i j j i j j i j ilj j lj ilj ja D a D a D aλ ′ ′= + +…+ + +=z zγ γγ γγ γγ γ ,   (9) 

where z denotes the vector of  predictors and γγγγ denotes the corresponding vector of 

coefficients. 

 This is a proportional hazards model that is semi-parametric in the sense of a Cox 

(1972) proportional hazards model as the number of time intervals increases.3 Assuming 

a constant exponential hazard for each piece, the integrated hazard in Eq. (5) can be 

written as ilj ilj iljt λΛ ∆= . We exploit the similarity between the loglinear model for counts 

and the exponential model for rates by including the logged exposure to risk in the lth 

interval  ( log ilt∆ ) as an “offset” term in a Poisson regression model. It is well known that 

this approach yields a piecewise constant exponential hazard rate model (see, e.g., 

Holford 1976;1980, Laird and Oliver 1981).  Eq. (5) can now be written as 

   ( ) exp( lo )gilj j lj ilj j iljtF a′ ′= + ∆+x b z γγγγ      (10) 

                                                 
3 In the extreme case, the number of time intervals would equal the number of unique event times. 
Applying this model to a data set that has been split at the unique failure times would give results identical 
to a Cox proportional hazard model estimated with Breslow’s correction for ties. 
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 It should be noted that while modeling is based on Eq. (10)  using Poisson 

regression, we actually decompose the difference in the rates given in Eq. (9). That is, 

1 6( , , , )D D= …x z  and 1 6( , , )a a= …b γγγγ .   There are advantages to this formulation apart 

from the fact that standard programs can be used to estimate the models (i.e., Stata glm, R 

glm, and SAS proc genmod). Nonproportional covariate effects can be introduced by 

replacing jγγγγ  in Eq. (10)  with ljγγγγ (i.e., by including interactions of covariates ( z ) and the 

dummy variables (D) for the age intervals).  Similarly, time-varying covariates can be 

included in the model, with possibly different values of  z  for each interval. The 

calculations above are facilitated by arranging the input data in the form of a split-episode 

data structure, with in  periods of risk (i.e., person-periods or stacked data) allocated to 

individual i. In this case the double summations in Eq. (4) are replaced by single 

summations over the person-period data (see e.g., Allison 1982).  

 We would like to decompose the overall difference in Eq. (3) into components 

that reflect compositional differences between groups and differences in the effects of 

those characteristics between groups similar to what was done in Eq. (2). We can rewrite 

Eq. (3)  as4 

  { ( ) ( )} { ( ) ( )}B W B WB B B WW Wr r F F F F

E C

′ ′ ′ ′− = − + −x b x b x b x b
144424443 14444244443

  (11) 

The E component appearing in Eq. (11) is the portion of the differential attributed to 

compositional differences or differences in “endowments,” which is the predicted 

                                                 
4 We drop the individual subscript i on 

i
x for notational clarity. 
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premarital birth rate for blacks minus the predicted rate if whites experienced the same 

returns to risk, or behavioral responses, to characteristics as blacks. This component 

reflects the contribution to the difference that would have occurred if the two groups 

differed with respect to characteristics alone. The C component in Eq. (11) is the portion 

of the black-white gap attributable to differences in the coefficients, and reflects the 

contribution to the difference that would prevail if only the covariate effects differed 

across groups. Both groups’ characteristics are held fixed at white levels to assess this 

component. 

 In the expressions above, the coefficients for the black sample are used as weights 

in the composition (E) component and the white covariate values are used as weights in 

the coefficient (C) component, making blacks the comparison group and whites the 

reference group in this case. The same differential (with a change in sign) can be obtained 

from an alternative decomposition that switches the roles of the reference and comparison 

groups. This is referred to as the “indexing” problem (Neumark 1988,  Oaxaca and 

Ransom 1988; 1994).  

 By fixing the coefficients in the composition component to black levels, we assess 

the contribution to the black-white gap that would have occurred if the returns to risk 

associated with the covariates in the model were fixed to the values in the black sample. 

By fixing characteristics to white levels in the coefficient component, we assess the 

contribution to the differential that is due to the black-white difference in effects. An 

equivalent decomposition would reverse this procedure. That is, we could perform a 

different decomposition by weighting the composition component by the white 
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coefficient values while using the observed characteristics of blacks as weights in the 

coefficient component. Sometimes the average of the results of the two specifications is 

reported.  

 

3. Detailed Decomposition 

 The decomposition thus far has been described at the aggregate level. To 

understand the unique contribution of each predictor to each component of the difference 

requires a detailed decomposition. That is, we wish to partition E and C into portions, 

kE and kC  ( 1, , )k K= …  that represent the unique contribution of the kth covariate to E 

and C, respectively.  Unlike the decomposition for a linear model, a nonlinear 

decomposition is sensitive to the order in which the independent variables are entered 

into the decomposition. This problem is referred to as “path dependence” (see e.g., Yun 

2004).  The two approaches to detailed decomposition outlined below provide remedies 

to this problem. 

 Fairlie (2005) adopts a multi-step procedure for a decomposition based on a logit 

model, focusing on the characteristics component, E .  The procedure requires that we 

perform a one-to-one matching of comparison-group and reference-group observations 

based on the ranking of their respective within-group predicted response probabilities. 

The independent contribution of a variable to E is determined by evaluating a 

decomposition in which one covariate value from the reference group (e.g.,  1Wz ) is 

swapped with one from the comparison group (e.g., 1Bz ).  Thus, the contribution of each 

variable to E  is equal to the difference in the average prediction when the reference 
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group’s distribution on a variable is replaced with the comparison group’s distribution on 

that variable while holding the distributions of the other variable constant. 

 This method is straightforward when the sample sizes are equal. Since this is 

seldom the case, modifications to the matching procedure are required.  The steps 

suggested by Fairlie are to: (1) draw a random sample from the larger group equal in size 

to that of the smaller group, (2) rank each group by their respective predicted response 

probabilities, (3) match observations from the two samples according to their respective 

rankings on the predicted responses, and (4) evaluate the average group difference in the 

response probabilities using the sequential covariate swapping approach outlined earlier. 

This approach does not solve the path dependence problem unless it is accompanied by 

randomizing the variable swapping order in step (4).  In practice, it is necessary to carry 

out these steps on a large number of random samples from the larger group. The results 

are then averaged over all the random samples.  

 Even and Macpherson (1993), Nielsen (1998), and Yun (2004) have suggested 

simpler methods for detailed decomposition using weights derived from a linearization of 

the decomposition equation. The detailed decompositions obtained in this way are 

invariant to the order that variables enter the decomposition, thus providing a solution to 

path dependency. It should be noted that Even and Macpherson (1993) focus on the 

endowment component only, whereas Nielsen (1998) focuses only on the coefficient 

component.  

 In order to derive the weights that determine the contribution of each covariate to 

the characteristics and coefficients effects, we consider a two-step approximation of 



 15

decomposition equation (Eq. (11)). We first approximate ( )j jF ′x b  by evaluating 

( )j jF ′x b  at the means of the covariates, i.e.,  ( ) ( )j j j jF F′ ′≈ xb bx . For example, let us 

denote the characteristics and coefficients components evaluated at the covariate means 

as ( ) ( )B B W BME F F′ ′= −x b x b  and ( ) ( )W B W WMC F F′ ′= −x b x b ,  respectively. Eq. (3) can 

then be expressed as 

 B W M M Mr r E C R− = + + ,       (12) 

where 

 ( ) ( )M M MR E E C C= − + − . 

 In the 2nd step, we approximate ME  and MC  in Eq. (12) by a first-order Taylor 

expansion about B B
′x ββββ and W W

′x ββββ .5  The final decomposition equation after the Taylor 

expansion is 

 
) ( ) ( ) (( )B W B B B B BW W W W W M T

T T M T

r r f f R

E

R

C R R

′ ′ ′ ′=

=

− − + − + +

+ + +

x x b x b x b b x b
,  (13) 

where 

 
[ ) ( )] [ ( ) ( )]

( ) ( )

(T M B A B B B M W B W W W

M T M T

R E f C f

E E C C

′ ′ ′ ′= − − + − −

= − + −

x x b x b x b b x b
, 

and 
)

(
( )

(
)

j j

j j

j j

dF
f

d

′

′
=′

x b
x b

x b
is the first derivative of ( )j jF ′x b . The quantities MR , TR , and 

)( j jf ′x b  are all scalars. MR and TR  are approximation errors resulting from 

                                                 
5  As noted by Yun (2004), it is also possible to derive the weights using a single approximation. For 
expository purposes, we consider two approximations.  
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evaluating (·)F  at the mean values and by using the first order Taylor expansion, 

respectively.  Based on Eq. (13),  the kth weight component for E  is obtained as, 

  

1 1

( ) ( ) ( )

( ) ( ) ( )
k

Tk Bk Bk Wk B B Bk Bk Wk
x K K

T
Bk Bk Wk B B Bk Bk Wk

k k

E b x x f b x x
W

E
b x x f b x x

∆

= =

′− −
= = =

′− −∑ ∑

x b

x b

.  (14) 

Similarly, the kth weight component forC is given by, 

  

1 1

( ) ( ) ( )
,

( ) ( ) ( )
k

Tk Bk Bk Wk Bk Bk Wk
b K K

T
Bk Bk Wk B

W W

W W k Bk Wk

k k

C x b b f x b b
W

C
x b b f x b b

∆

= =

′− −
= = =

′− −∑ ∑

x b

x b

  (15) 

where 1.0
k kx b

k k

W W∆ ∆= =∑ ∑ . 

 Thus, the composition weights 
kx

W∆ reflect the contribution of the kth covariate to 

the Taylor approximation of E  ( TE ) as determined by the magnitude of the group 

difference in means weighted by the reference group’s effect.  Similarly, the coefficient 

weights 
kb

W∆ reflect covariate k’s contribution to TC  as determined by the magnitude of 

the group difference in the effects weighted by the comparison group’s mean. The 

weights are invariant to change in the scale of the covariates.  

 The raw difference can now be expressed in terms of the overall components as a 

sum of weighted sums of the unique contributions. 

 
1 1 1 1

k k

K K K K

x b k kB W

k k k k

r r E C W E W C E C∆ ∆

= = = =

− = + = + = +∑ ∑ ∑ ∑ .   (16) 

This weighting method gives results that are nearly identical to the sampling and 

randomization procedures outlined earlier as long as enough samples are drawn.   
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4. Variability in Decomposition Estimates 

 Many applications ignore the sampling variability of the decomposition 

components (see, e.g., Borooah and Iyer 2005, Sweeney and Phillips 2004, Van Hook, 

Brown and Kwenda 2004). The characteristics and effects components do not provide 

information about the precision of the contributions to group differences per se. For this 

reason, it is important to gauge the sampling variability of E and C in substantive 

applications. Because the components used in the decomposition are functions of 

maximum likelihood estimates, the delta method described by Rao (1973, Pp. 321-323) 

can be used to derive asymptotic standard errors of the detailed contributions. Interval 

estimation and significance testing can be done in the usual way (see, e.g., Yun 2005a). 

This approach utilizes expressions for the first derivatives (i.e., gradients) of the detailed 

components with respect to the estimates, in addition to the variance covariance matrix of 

the estimates from each group, as we show next.  

 E and C, along with the detailed contributions, kE and kC , are nonlinear functions 

of the maximum likelihood estimates b . The derivatives of kE and kC with respect to b , 

together with the variance/covariance matrix of b , are used to obtain the asymptotic 

variance-covariance matrix of the detailed components.  We begin by expressing the 

endowment component as a weighted sum of the individual contributions, kE , 

   
1 1

{ ( ) ( )}.
k

K K

k Bx B

k

BW

k

E E W F F∆

= =

′ ′= = −∑ ∑ x b x b    (17) 

The kth element of the gradient vector is given by 
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( )( )

{ ( ) ( )}
k k

k k k

W BB
B B

k B
x x B W

B B B

E FF
W w F F

b b b
∆

′′∂ ∂  
−

∂
′ ′= + −

∂ ∂
 
  ∂

x bx b
x b x b ,  (18) 

where 

 

2

2

( )

( )
( )

k k k k k k

k

k k k k
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which has a convenient form owing to the assumption of Poisson sampling.6 

 Letting var( )Bb denote the variance/covariance matrix of Bb  and E denote the 

K K×  matrix with 1, , KE E… on the main diagonal and zeros elsewhere, the asymptotic 

(co)variances matrix of the detailed characteristics component is    

    var( ) .B

B B

′   ∂ ∂
   
∂ ∂   

E E
b

b b
    (20) 

 Following the same logic, the coefficient component can be written as the sum of 

individual contributions as, 

  
1 1
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K K

k Bb W

k
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C C W F F∆

= =

′ ′= = −∑ ∑ x b x b       (21) 

                                                 
6 In this case (.) (.)F f= . 
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Each covariate's contribution to the overall coefficient component depends on the 

parameter vectors, Bb  and Wb . The kth elements of the respective gradients are 

  ( ) ( )
k k k

k
b W B W b W B

B

C
W f x w F

b
∆
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when j W= this quantity has the opposite sign.  Letting var( )Bb  and var( )Wb denote the 

covariance matrix of the estimates from black and white models, respectively, and let C  

be a K K×  matrix with 1, , KC C…  on the main diagonal and zeros elsewhere, the large 

sample (co)variance matrix of the detailed coefficient components is 

  var vavar( ) ( ) (r )B

B

W

B WW

′′       ∂ ∂ ∂ ∂
= +       

∂ ∂ ∂ ∂       

C C C C
C b b

b b b b
  (25) 

 Significance tests on individual components, blocks of components, or for the 

overall decomposition as a whole, can be carried out using Wald tests by redefining E 

and  C to include a subset of the original set of terms along with the corresponding sub-

matrices of var( )Bb  and  var( )Wb . The variance estimates derived above assume that the 
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independent variables are fixed and that groups are independent. They will underestimate 

the true variances if this is not the case. 

 It would also be possible to obtain a bootstrapped distribution of the components 

by applying a repeated modeling approach. Alternatively, a Bayesian approach can be 

used to obtain the posterior distribution of each component using a Markov Chain Monte 

Carlo (MCMC) method as outlined by Radchenko and Yun (2003). An alternative to 

bootstrapping or a full Bayesian approach is to simulate the distributions of each 

component by drawing M parameter vectors for each group, carrying out the 

decomposition on the simulated parameter vectors, and obtaining means and variances of 

the resulting distributions of the decomposition components.  Specifically, let  

    ~ ( , )
j

m

j jMVN
b

b b ΣΣΣΣ      (26) 

denote the mth simulated parameter vector from the jth group, which is assumed to 

follow a multivariate normal distribution centered around the MLE’s, with 

variance/covariance 
b

ΣΣΣΣ . With no loss of generality, 
b

ΣΣΣΣ  could be drawn from an inverse-

Wishart distribution to allow for sampling variation in the covariances.  Under this 

approach, the decomposition is carried out M times, resulting in a posterior predictive 

distribution for each quantity in the decomposition (see e.g., Lynch and Western 2004). 

Statistical inference can be carried on the quantities from the resulting distributions. 

 

5. Example 

 Race/ethnic differences in the risk of out-of-wedlock childbearing are routinely 

examined using group-specific hazard rate models or models in which race/ethnicity is 
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included as a risk factor. Although this approach yields insight into the relative 

importance of key predictors of nonmarital fertility for different race/ethnic groups, it 

cannot answer questions about the relative contributions of race differences in 

characteristics and effects to the absolute race/ethnic differences in rates. In particular, to 

what extent is the racial difference in rates attributable to compositional differences in 

predictors—such as what might be reflected by group differences in socioeconomic 

resources and family structure—and to differences in the effects of these predictors (i.e., 

the group differences in behavioral responses to these characteristics)? 

 We decompose the observed black-white difference in premarital birth rates into 

compositional and return-to-risk components. The decomposition is carried out at the 

aggregate and detailed levels, thus allowing an assessment of the contribution of each 

model predictor to the racial gap. For research on first nonmarital fertility transitions, this 

type of analysis provides a way to assess the contributions of socioeconomic background 

and family structure, whose effects and distributions differ by race. 

 Data from the 1979 National Longitudinal Survey of Youth (NLSY79 Center for 

Human Resource Research 1979) are used to model first non-marital fertility transitions 

(i.e., first premarital birth) for blacks and whites using proportional hazards models. We 

adopt a parsimonious model specification using covariates that have been widely used in 

past research including: (1) family background characteristics: (mother's education, 

adjusted family income7 and number of older siblings) and (2) family structure 

characteristics: (mother’s age at respondent’s birth, proportion of years living in single 

                                                 
7 Adjusted Income  = fam ily incom e / (10, fam ily s0 0 )0 ize× . 
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mother family, and number of family changes up to the time of the event or before age 18, 

whichever occurs first). The latter two variables are computed using the 18-year living 

arrangement histories in the NLSY (see, e.g., Wu and Thomson 2000, Powers 2005). 

 The estimated black-white difference in the crude rates of first premarital birth is 

0.02048 ( 0.02530 0.00482 = 0.02048B Wrr − −= ). To facilitate the presentation of results, 

we express this difference as 20.48 births (per year of age) per 1,000 women. Table 1 

presents covariate means and model estimates for each group as well as the crude rates 

per 1,000 and race differences in rates.  Table 2 provides the detailed decomposition 

obtained by averaging the results of separate decompositions with interchanged reference 

and comparison groups.8 The contributions have been multiplied by 1,000 to reflect 

increases or decreases in the gap in terms of numbers of births per year of age per 1,000 

women. Under the current model, compositional differences between blacks and whites 

(i.e., differences in levels of resources and family structure) contribute 5.16 births per 

1,000 (25.2%) to the overall gap, whereas black-white differences in covariate effects 

(i.e., the returns-to-risk of these characteristics) contribute 15.32 births per 1,000 (74.8%) 

to the estimated difference.  

[Tables 1 and 2 about here] 

 We first discuss the contributions of the substantive predictors to the overall 

premarital birth rate gap. We shall discuss the baseline hazard contribution later. Table 2 

shows the detailed decomposition for the family background and family structure 

variables.  A positive characteristic effect, kE , indicates the amount that the black-white 

                                                 
8 The results reported above were estimated using a computer routine written in R (R Development Core 
Team 2005) available upon request.   



 23

gap would decrease if the group difference in variable k would disappear. Based on the 

results from the proportional hazard models (Table 1), each change in family structure (or 

family transition) increases the risk of a first premarital birth by 16% for blacks and 34% 

for whites.  However, whites experience fewer of these transitions on average than blacks, 

with means of 0.49 and 0.62 transitions, respectively. The results in Table 2 show that 

with respect to the (white) reference group, this compositional disadvantage for black 

women contributes 0.46, or about 2.2%, to the overall difference. Turning to the income 

effect, we see from Table 1 that a $10,000 increase in adjusted family income is 

associated with a 34% and 43% decrease in the risk of premarital birth for whites and 

blacks, respectively. Despite similar returns to income, average income in black families 

in the NLSY is 55 percent that of white families. From Table 2 we see that the difference 

in family income by race accounts for 4.37 births per 1,000 women, which comprises 

over 21% of the overall racial difference in rates. Among the compositional factors 

considered here, making family incomes and number of older siblings in the comparison 

population (blacks) equal to that of the reference population (whites) would produce the 

largest reductions in the racial gap in the premarital birth rate.  

 A similar interpretation applies to the effects component, kC . A negative 

coefficient indicates the expected increase in the black-white gap if blacks experienced 

the same returns-to-risk as whites. For example, if we consider the “number of older 

siblings” effects reported in Table 1, each additional elder sibling is expected to increase 

a woman’s risk of a premarital birth by 18.2% and 5.3% for white and black women, 

respectively. From Table 2, we find that the overall black-white gap would be expected to 
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increase by 2.82 births per 1,000 (7.7%) if black women were penalized by the number 

older siblings to the same extent as white women. Similarly, a positive C-coefficient 

reflects the expected decrease in the black-white gap due to equalizing an effect to the 

white level. For example, whites and blacks experience different returns to maternal 

education. Based on the results from the proportional hazards model in Table 1, each 

additional year of mother’s schooling reduces the risk of premarital birth by 12.6% for 

whites and 6.3% for blacks. The decomposition results in Table 2 show that if blacks 

benefitted from higher levels of maternal education to the same degree as whites, then we 

would expect the black-white gap in the premarital birth rate to decrease by 8.11 births 

per 1,000, or 39.6% of the overall gap. Differences in returns to maternal education, as 

well as differences in the effects of maternal age at respondent’s birth are the largest 

contributors to the overall gap. 

 If we were to consider a hypothetical policy designed to reduce the black-white 

gap in the premarital birth rate, then equalizing socioeconomic resources across groups 

would lead to a larger decrease in the compositional portion of the gap than would 

making groups more similar in terms of family structure (number of family transitions, 

proportion of years spent in a single mother family, and number of older siblings). 

However, a greater share of the total differential can be attributed to differences in the 

effects of maternal education and mother’s age at respondent’s birth, so equalizing these 

effects across groups would yield the greatest reduction in the black-white premarital 

birth rate gap. It is probably safe to say that changing behavioral responses presents a 
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more challenging task from a policy perspective than equalizing socioeconomic resources 

across groups. 

 

Baseline Hazard Components 

 Compositional components involving the dummy variables for the age intervals 

that define the baseline hazard play the same role as the constant term in a standard 

multivariate decomposition. The piecewise constant hazard model effectively partitions 

the constant term into several pieces, with individuals differing on the number of pieces 

they contribute. In standard models, the mean value of the constant is always 1 and the 

difference in means across groups is always 0.  For the decomposition of the piecewise 

constant hazard model, the characteristics effects associated with the pieces of the 

baseline hazard reflect race differences in the distribution of exposure, which in-turn is a 

function of race differences in the age distribution of events and censoring. The fact that 

the characteristics effects of the baseline hazard reported in the first panel of Table 2 are 

at first negative and then positive, reflects that the age distribution of events is centered at 

a younger age for black women and at an older age for white women. 

 The coefficient effects for the baseline hazard are informative about the 

contribution of racial differences in the age-specific baseline hazard rates to racial gap in 

premarital birth rates.  Taken together, group differences in the logged baseline hazards 

(i.e., the coefficients pertaining to the age-interval of the event from the model) account 

for about 7 births per 1,000, or 37%, of the racial gap (Table 2).  This is the expected 

reduction in the gap if blacks were to experience the same age-specific baseline rates as 
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whites. We find that the largest contributors to the differential are attributed to 

differences in the baseline hazards pertaining to the first 3 age intervals, which reflect the 

race differences in the underlying rates for teenagers. 

 

Nonproportional Hazards 

 As mentioned earlier, it is possible to incorporate nonproportional effects via 

interactions with the age-interval dummy variables.  For example, we could introduce a  

×lD z  interaction into Eq. (9).  Adding these types of interactions presents no additional 

difficulty in the decomposition procedure per se. However, the characteristics effects for 

an interaction term will reflect differences in exposure in age interval l in addition to 

differences in characteristics for those at risk in age interval l. Thus, the characteristic 

effects associated with age-interval interactions are somewhat ambiguous. However, the 

coefficient effects have a straightforward interpretation.    

 In these data we find evidence of an age-varying effect of family income in the 

sample of non-Hispanic white women, with different effects on the risk for those aged 24 

and younger and for those at older than 24. We fit a nonproportional effects model to 

both groups that includes one family income effect on the risk in 12-24 year old age-

interval and one income effect on the risk beyond age 24. We refer to this as Model 2. 

Table 3 provides the relevant income effects for both groups as well as the decomposition 

results from Model 2 and from the original model (Model 1).  We find that for white 

women, a $10,000 change in family income yields a 62% reduction in the risk of a 

premarital birth in the 12-24 age interval, whereas the same change in family income 
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increases the risk of a premarital birth by 63% at older ages.  For black women, increased 

income has no significant effect on the risk of premarital births at older ages.  

[Table 3 about here] 

 The decomposition results in Table 3 show that compositional differences in 

income levels for those at risk of events in the 12-24 age interval account for 23% of the 

total racial gap according to Model 2. This is similar to the contribution of 21% in Model 

1, which pertains to all ages. Differences in the effects of income at younger ages account 

for 12% of the total gap in Model 2. Therefore, equalizing the returns to income for 

younger women would be expected to reduce the black-white gap by 2.5 births per 1,000 

as a result of the larger race difference in age 12-24 income effects in Model 2.  This is in 

sharp contrast to Model 1 where the effects of income are similar by race and where the 

racial difference in income effects comprises a negligible portion of the black-white 

difference in the premarital birth rate. Race differences in effects of income at older ages 

account for a small portion of the total gap, and equalizing income effects for older 

women would be expected to increase the gap in the premarital birth rate by less than 1 

birth per 1,000 women. 

 Under Model 2, differences in characteristics account for 27.4% of the racial gap 

in premarital birth rates while differences in effects account for 72.6%. These results are 

similar to those from Model 1 (25.2% and 74.8%, respectively). While the overall 

contributions are similar, it should be noted that the income ×  age interaction in Model 2 

necessarily impacts the baseline hazard, thus blurring the distinction between the baseline 

hazard and the structural part of the model to some extent.  We find that race differences 
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in the baseline hazard account for 13% of the overall gap in Model 2 compared to 37% of 

the gap in Model 1. 

 

6. Discussion 

 Multivariate decomposition provides a way to partition an observed group 

difference in statistics into portions that can be attributed to group differences in 

characteristics, or endowments, and to group differences in effects, or coefficients from a 

multivariate model. The statistics of interest could be means, proportions, counts, and (as 

shown here) rates. Multivariate decomposition of a difference in means involves a 

straightforward substitution technique based on results from OLS regression models, and 

has been widely used over the past several decades. Techniques for multivariate 

decomposition for nonlinear models have been developed more recently, but have not 

thus far been extended to hazard rate models.  

 

Decomposition Using  Cox Regression Models and Discrete-Time Hazard Models 

 Our proposed method involves a simple parametric model with a flexible 

functional form for the baseline hazard. Due to its popularity, a multivariate 

decomposition technique based on the Cox regression model would seem particularly 

attractive. However, applying our decomposition approach to the Cox model poses 

several problems. Because the baseline hazard is unspecified in Cox regression, it is not 

directly available as a decomposable part of the model. Moreover, although we could 

retrieve the baseline hazard using numerical methods, there is no guarantee that a 
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difference in the hazard (at age t) across groups would exist due to group differences in 

the ages that events occur. For example, in the NLSY, the youngest and oldest event ages 

are 11.67 and 33.83 in the black subsample and 13.83 and 35.33 in the white subsample. 

Therefore, applying this approach to a Cox regression model would require that the 

number of unique event times be the same and that the event times are equal for both 

groups. Despite these difficulties, there may be alternative decomposition techniques that 

are better suited to the Cox model. Here we offer a practical alternative to approximate 

the baseline hazard of the Cox regression model using a step function defined along a 

common set of cut points. 

 Discrete-time models are widely used in social science research. These models are 

generally estimated with logit models fit to person-period data. The decomposition of 

differences in predictions from discrete time logit hazard models is straightforward. We 

assume that data are structured in the person-period format as previously discussed. As 

with the piecewise constant rate models, the number of events in group j equals the sum 

of the predicted probabilities over the person-periods of exposure 
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Some minor changes to the formulas for the standard errors of the decomposition 

quantities are needed. Specifically, the analogous expression for Eq. (19) is  
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Limitations 

 Multivariate decomposition is facilitated by the availability of several computer 

routines in standard statistical packages. For example, multivariate decomposition can be 

carried out in Stata using the packages: oaxaca (Jann 2008), gdecomp (Bartus 2006), 

and fairlie (Jann 2006), and nldecompose (Sinning, Hahn, and Bauer 2008).  SAS 

macros also exist for Fairlie’s method.  Stata’s fairlie package (and the SAS macro) 

decomposes a difference in proportions based on logit or probit models into the 

characteristics portion only, whereas gdecomp provides both components and extends to 

models for count data. The nldecompose  handles a variety of nonlinear models, but does 

not carry out a detailed decomposition. The oaxaca package handles differences in 

means using results from the classical linear model. 

 Currently no add-on routines for commercial packages exist for carrying out a 

multivariate decomposition of a difference in rates. However, it would be feasible to 

modify existing routines such as gdecomp (Bartus 2006) to include an offset term. 

Another limitation might be the narrow focus on differences in first moments. The 
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methods outlined above adhere to the standard logic of multivariate decomposition by 

following in the spirit of previous research in which observed differences are the 

quantities to be decomposed. It is also possible to decompose a difference in logits, log-

odds ratios, or relative risks. For example, we could ignore the baseline hazard in a Cox 

regression and decompose the difference in the log of the risk scores, where the estimated 

risk score is defined as exp( )′ibx , and where j j jθ ′= x b  

    1 2 1 1 2 2 1 2( ( ))θ θ ′ ′+= −− −b x x x b b .       (30) 

This leads to a much simpler decomposition involving only means and effects. However, 

there is no sample analog for this difference and it is model dependent, whereas the 

differences in sample statistics are fixed for the samples involved.   

 The decomposability of the baseline hazard is an important issue for the models 

considered here.  In these data, the two groups are distributed differently across the 

segments of the baseline hazard, but the hazard varies across segments. That is, different 

weight is given to different pieces of the baseline hazard in the computation of the group-

specific rates.  Investigation into the sources of differences in distributions across pieces 

of the baseline hazard may be a fruitful area for further research. A potential source of 

difference is early censoring, such as what might occur when one group, on average, 

marries at a younger age resulting in reduced exposure to risk at later ages. In this case, 

decomposition might be carried out to identify an additional component due to 

differences in age at marriage and other sources of censoring. Thus, additional 

information can be used to obtain alternative decomposition estimates. However, in the 
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absence of additional information, the method that we propose obtains estimates in a 

straightforward manner using only model estimates and covariates. 

  Another possible source of difference in the baseline hazard stems from the 

dynamic nature of the hazard rate model insofar as the amount of exposure at later ages 

depends on the conditional rates at earlier ages. Alternative approaches might be 

developed to take account of this when building the counterfactuals for the 

decomposition.  For example, if the coefficients for blacks are used to compute the 

counterfactual rate for whites, the counterfactual could be adjusted for the fact that with 

the substituted coefficients, the expected exposure distribution for whites would change.  

This implies that part of the differential attributed to independent variables encompasses 

the indirect contribution through effects on the exposure distribution. For a 

decomposition constructed in this way, the contribution of the baseline hazard would then 

only reflect the differences due to group-specific differences in censoring (e.g., because 

of group differences in the average age at marriage).9  However, this approach may 

require additional assumptions to generate the expected exposure sets. Compared to this 

approach, our proposed Oaxaca-type decomposition provides a straightforward approach 

to obtain counterfactuals. 

 Although often overlooked, it is well known that estimates corresponding to 

dummy variables in the coefficient component of the decomposition are not invariant to 

the choice of the reference categories for the dummy variables appearing in the model 

(Oaxaca and Ransom 1999;  Yun  2005b, 2008). Adopting a particular reference category 

                                                 
9 We thank a reviewer for suggesting this extension.  
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necessarily affects the estimates of the effects corresponding to other factor levels as well 

as the constant term. This parameter invariance can be remedied by carrying out a 

separate decomposition for each of the possible normalizations of the dummy variables 

and averaging the results. Alternatively, it is possible to augment the coefficient and 

design matrices that are passed to the decomposition routine as suggested by Yun (2005b, 

2008).  Either approach yields estimates of kC  and kE  for all levels of the factors. 

 A further limitation is that all decomposition methods are sensitive to model 

specification. Although the decomposition of differences in rates outlined above 

guarantees a partitioning of components that necessarily sum to the observed difference, 

the detailed results are sensitive to model specification insofar as adding or removing 

covariates will affect the allocation of overall difference to the constituent parts. 

Therefore, the context in which this method is used is important as it depends on a well-

specified model—such as the final model among a set of competing models—a as well as 

a strong substantive motivation for that model.
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Table 1: Means, Effects (hazard ratios and baseline hazards), and Event Percentages. 
 

 

  Blacks     Whites     

Independent Variables Means 
b
e  Z

†
 Means 

b
e  Z

†
 

pct. years in single mother family 0.24 1.117 1.02 0.06 2.166 2.41 

number of family changes 0.62 1.162 3.82 0.49 1.336 5.87 

mother's schooling 10.76 0.937 -4.38 11.87 0.874 -5.69 

Adjusted family income X 10,000 0.55  0.570 -5.15 1.00  0.658 -3.09 

number of older siblings 2.72 1.053 3.01 1.90 1.182 4.61 

mother's age at R's birth 24.91 0.971 -4.30 25.48 0.949 -4.09 

         

Baseline Hazard Age Intervals  % Events 
b
e  Z

†
 % Events 

b
e  Z

†
 

[12, 16) 5.60 0.014 -16.99 0.74 0.006 -11.39 

[16, 18) 15.03 0.367 -4.24 2.45 0.176 -4.30 

[18, 20) 14.00 0.455 -3.30 2.58 0.244 -3.44 

[20, 22) 9.87 0.473 -3.06 2.06 0.276 -3.07 

[22, 24) 5.16 0.348 -4.06 0.87 0.165 -3.97 

[ 24+) 6.26 0.194 -6.42 2.49 0.245 -3.39 

Event Percentage 55.93     11.19     

Crude Rates 1000×  25.3 0  4.82   

Black-White Difference in Rates = 20.48       

N 1,357     2,287     
† Z = / se( )b b . 
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Table 2: Decomposition into Characteristics (E) and Coefficients (C) Components. 

         

    95% CI     95% CI   

Independent Variables 
E 

(× 1000) lower upper % of total 
C  

(× 1000) lower upper % of total 

pct. years in single mother family 0.89 -0.77 2.54 4.33 -1.11 -1.82 -0.39 -5.42 

number of family changes 0.46 0.39 0.52 2.23 -0.81 -1.24 -0.37 -3.95 

mother's schooling 1.68 -0.71 4.07 8.19 8.11 5.18 11.11 39.60 

adjusted family income X 10,000 4.37 2.26 6.48 21.32 -1.09 -2.81 0.63 -5.33 

number of older siblings 1.19 0.28 2.11 5.83 -2.82 -4.17 -1.46 -13.74 

mother's age at R's birth 0.36 -1.16 1.89 1.77 6.00 3.60 8.39 29.28 

Baseline Hazard Age Intervals           

[12, 16) -5.02 -6.25 -3.79 -24.51 2.75 1.36 4.14 13.43 

[16, 18) -0.44 -0.83 -0.04 -2.13 1.97 0.79 3.14 9.61 

[18, 20) 0.38 -0.30 1.05 1.83 1.19 0.26 2.11 5.80 

[20, 22) 0.36 -0.34 1.06 1.76 0.66  0.02 1.30 3.22 

[22, 24) 0.49 -0.02 1.00 2.39 0.60 0.14 1.06 2.93 

[ 24+) 0.45 0.09 0.81 2.18 -0.13 -0.44 0.18 -0.64 

Overall Contributions 
 

5.16kE =∑   

     95%CI 
[  3.43 – 6.89  ]   

25.21 
 

15.32kC =∑  

        95%CI 
 [ 12.88 – 17.77 ] 

74.79 
 

Note: % of total is the percentage share of the differential in crude rates of 20.48 between blacks 
(25.30 per 1,000) and whites (4.82 per 1,000). Results are the average of two decompositions. 
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Table 3: Proportional and Nonproportional Effects of Family Income and Decomposition Components 

 Blacks  Whites          

 b
e   b

e   E  % of 
Total 

C  % of 
Total 

 

Model 1:  
Proportional Effect of Family Income 

family income  0.570 * 0.658 * 4.37 * 21.32 -1.09  -5.33 
 
 

            

 
Model 2: 
Nonproportional Effect of Family Income 

 
family income X age [12,24) 0.553 * 0.385 * 4.78 * 21.25 2.51 * 12.23  

family income X age [24+) 0.699  1.629 * 0.12  0.45 -0.40 * -1.95  

            

* p < 0.05.            

 


