Accounting for Selection in the Academic Impact of High School Sports on White and Black Males
by

Dara R. Shifrer

The University of Texas at Austin

Background

The positive academic associations of high school sports participation extend to outcomes ranging from high school to postsecondary schooling, including better grades, lower drop-out rates, improved social and psychological development, and increased educational aspirations and attainment (Barber et al. 2001; Eder and Parker 1987; Guest and Schneider 2003; Hoffman 2006; Long and Caudill 1991; McNeal 1999; Sabo et al. 1993; Spady 1970; Videon 2002), but it is unclear whether these academic benefits of sports apply to black boys to the same degree as to white boys. Black males participate in high school sports at higher rates than white males, and the academic benefits of sports could have important implications for their educational attainment. Motivations for participating in sports, the experience of sports, and thus the impact of sports may vary by race; moreover, the positive academic benefits of sports may actually reflect the accumulation of qualities possessed by athletes before participating. This paper explores the participation rates and the impact of sports on high school academic outcomes predictive of college-going for white and black boys from the 1980s through the 2000s, with a focus on the role of selection within the effect of sports.

BENEFITS OF SPORTS

Extracurricular activities have generally been linked to outcomes as diverse as improved school achievement, income, and educational and occupational attainment, as well as a reduced likelihood of dropping out of school, using alcohol and drugs, and engaging in criminal activity (Barber et al. 2001; Guest and Schneider 2003; Hoffman
2006). Extracurricular activities fulfill the adolescents' need for "social relatedness," "stimulate youth to evaluate their social beliefs" (Barber et al. 2001: 430), and improve social adjustment and psychosocial development (Guest and Schneider 2003). Sports, in particular, have been "considered an important avenue for the expression of aggression between peers," and a potential site for much gender socialization (Eder and Parker 1987:205). Though, extracurricular activities, in general, are thought to increase visibility and status amongst peers (Eder and Parker 1987), sports are especially singled out as an avenue for status in the adolescent peer group, particularly for males (Coleman 1961; Guest and Schneider 2003). These psycho-social and social benefits of sports should improve academics by virtue of increased self-confidence and attachment to the school.

In addition to building social capital, sports have long been associated with building human capital. Not only are athletes exposed to other motivated students (Hoffman 2006), but they are explicitly taught skills and values that extend beyond the playing field. Coaches teach adolescents to endure discomfort and pain, and to develop toughness, aggression and confidence; also inherent in sports are notions of competition and achievement (Eder and Parker 1987). As with extracurricular activities in general, sports participation has a positive association with grades, educational aspirations and educational attainment (Barber et al. 2001; Braddock 1981; Guest and Schneider 2003; Hoffman 2006). It is even common practice for participation in high school sports to be contingent upon the maintenance of certain academic standards. Sports are attributed with developing the total package of skills - academic, social and psychological - that contribute to educational success and attainment.

COSTS OF SPORTS

On the other hand, there are also negative associations of sports. Higher rates of drinking (Barber et al. 2001; Hoffman 2006) and increased aggressiveness and sexuality (Hoffman 2006; Miller et al. 1998) have been attributed to high school sports participation. Though sports might increase expectations of attending college, expectations do not equal enrollment or completion of college (Videon 2002). William Spady's (1970) finding that the increase in "perceived status" associated with sports was "positively related to goals but negatively related to their fulfillment" potentially undermines research that concluded sports have positive academic associations via nonconcrete academic outcomes such as "educational expectations." If not a positive impact, research finds no effect of sports more often than negative impacts.

THE UNIQUE CASE OF THE BLACK BOY

Positive or null, the effect of sports may be differentiated by race. In addition to structural differences in the implementation of sports programs, black boys, on average, diverge from white boys on a wide range of sociodemographic and educational measures. The multitude of statistics comprising the high risk status of black boys augment the implications of potential positive academic associations of sports, but these risk factors may also serve to defuse the positive aspects of sports for them. Black boys' disadvantage begins simply with their status as a racial minority. Thirty percent of black children live in families with incomes below the poverty line, in contrast to 12.8% of white and 27.4% of Hispanic children (Haveman et al. 2004). Being low socioeconomic status (SES) is negatively associated with academic achievement and college-going
(Entwisle 2007; Massey et al. 2002). In addition to higher incidence of poverty, blacks experience concentrated poverty at higher rates than whites (19\% versus 6\%) (Iceland 2006), and are more likely to be raised in female single-headed households (Ellwood and Jencks 2004). Not only do lower SES parents have lower educational expectations for their children in general (Entwisle 2007), but there are disparities by SES and race in school quality, teacher quality, and peer environment (Phillips and Chin 2004). High school sports might compensate for resources lacking in the homes and schools of minority students, potentially playing a more pivotal role in their academic and social lives than for non-minority students.

While all black children are impacted by the households and social status that they are born into, black males fare worse than black females. For example, with a much wider gap than the white gender gap, 67% of the Bachelor's degrees awarded to blacks are going to females (Buchmann and DiPrete 2006). Any low SES child experiences less role modeling of the middle class behavior expected within the school system (Entwisle 2007); black boys are also much less likely than black females to have a same-gender role model (Buchmann and DiPrete 2006), in part because black men are incarcerated at rates seven to eight times higher than white men (Western et al. 2004). Gender differentiated expectations and treatment are more marked in low SES homes which is thought to contribute to the greater gender gap (favoring females) in reading skills for low SES children (Entwisle 2007). Compounding these issues, the psychological impact of an enduring black male stigma leaves black boys in a tenuous position academically and otherwise (Ferguson 2001; Liebow 1967). With higher high school participation rates
and a greater presence in professional sports for black boys, sports might offer a singular sense of belonging for the black boy.

Though the results are mixed, previous research has shown that there are differences by race in the association between high school sports and academics. Snyder and Spreitzer (1990) found that more athletes go to college regardless of race, but, otherwise, the findings specifically focused on minorities have generally been less clear (Melnick and Sabo 1992). Some research has suggested that disadvantaged students or students in low-performing schools will experience added benefit from sports (Guest and Schneider 2003; Hoffman 2006; Videon 2002). In the 1980s, the strongest association for minorities and sports seemed to be increased social status within high school, and any positive academic effects of sports were smaller for black boys than white boys (Braddock 1981; Melnick and Sabo 1992; Sabo et al. 1993). It is also possible that black boys participate in different sports than white boys, coloring the impact of participation. On the other hand, the emphasis placed in urban schools on team sports in their physical education programs may lead to a focus on physical ability at the expense of academics (Wright et al. 2005), of particular relevance for black males (Riess 1980). More research is needed to distinguish the sports effects for black boys from effects found in studies focused on boys en masse or only white boys.

SELECTION EFFECT

The effect of sports may be totally or partially accounted for by selection factors, i.e., the positive academic outcomes of athletes are potentially just a reflection of characteristics held in common among athletes before they engage in the sports. Selection
is an issue within sports participation that most researchers have mentioned but not sufficiently addressed (Barber et al. 2001; McNeal 1999; Melnick and Sabo 1992; Miller et al. 1998; Videon 2002). It is predicted that, in addition to the context and time period, the impact of sports will vary depending on the motivation for participating (Guest and Schneider 2003). It is crucial to understand who (relative to their counterparts, e.g., among black males) chooses to participate in sports to parse out the effects of selection from the effect of actual participation (Videon 2002). In general, regional and school contexts are thought to influence who chooses to participate and the effect of participating (Guest and Schneider 2003; Hoffman 2006; Videon 2002). Rural regions have higher proportions of athletes than urban areas (McNeal 1999; Videon 2002). There are higher proportions of athletes in private schools versus public schools (Videon 2002). Students in large schools or schools with poor climates are less likely to participate in sports, but it is cautioned that large schools could be a proxy for low SES urban schools (McNeal 1999). On average, black boys attend schools with different characteristics than schools attended by white boys, which should differentiate their propensity to participate in sports.

Selection factors may also contribute to racial variation in the effect of sports: if blacks participate in sports for different reasons than white boys, or, in other words, if black athletes vary in characteristics precedent to sports participation from black nonathletes in different ways than white athletes vary from white non-athletes. High school athletes overall are more likely to be high SES and have good grades (McNeal 1999), but these characteristics may not accurately describe each subgroup within the overall average. Though blacks participate in high school athletics at higher rates than any other
group (Snyder and Spreitzer 1990), being a smaller proportionate share of the pool of all athletes makes it possible that the average black athlete is low SES, for example. Low SES males are less academically-oriented and more likely to embrace traditional gender roles and physicality than high SES males (Eder and Parker 1987; Entwisle 2007); furthermore, some theorize that sports are emphasized in the black community because they are perceived as one of the more feasible means of social mobility (Braddock 1981; Snyder and Spreitzer 1990). It is suggested that athletics have even become internalized as part of the black racial identity (Griffith 2007). In contrast, whites or middle-class families may be more likely to perceive sports as something complementary to academics, a component of the "concerted cultivation" of children (Lareau 2003). If black and white male athletes vary in different ways from their non-athlete counterparts, it would be expected that the effect of sports would not be consistent across races.

Despite the positive association between high school sports and college-going, this association may be weaker for black boys if they are more likely to perceive professional sports as the end to high school sports participation. There are higher proportions of blacks than whites in many of the professional sports, and a 1978 study (focusing on males) found that blacks rate themselves higher in sports ability than whites. It is speculated that blacks may view the sports arena as more accessible than other industries (Braddock 1981), as one of the few realms in majority culture wherein being black is an asset. The reality is that less than 10% of high school athletes go on to participate at the collegiate level and the odds of attaining professional athlete status range from 0.001 to 0.002 (Leonard 1996). Additionally, students who are admitted to college through an athletic scholarship will not necessarily be adequately prepared for the
academic aspect of college (Riess 1980). Sports have long been touted as a truly democratic system and thus a means of social mobility, particularly for disadvantaged youth (Riess 1980; Sabo et al. 1993). There is contention though that this is more conventional wisdom than fact (Guest and Schneider 2003; Reiss 1980) and that sports may actually act as an agent of "social reproduction" rather than social mobility (Sabo et al. 1993).

OTHER CONSIDERATIONS

In addition to taking selection into account, it is important to explore whether sports are acting to perpetuate the status quo (Duquin 1990). The "cumulative advantage hypothesis" describes the ability whites have to tap new advantage because of advantages in other areas of life; the "reinforcement hypothesis" positions high schools as institutions that help those who are already advantaged (Sabo et al. 1993). In line with the perpetuation of the status quo, some believe that sports teach athletes to accept hierarchy as legitimate; moreover, sexism and/or racism within sports may differentiate the experience for females and/or minorities (Eder and Parker 1987). These are aspects that have potentially changed with time as we have changed as a society and culture. Guest and Schneider (2003:90-1) state that "the developmental and historical context in which extracurricular participation takes place influences both how it is valued and its effects on subsequent development."

It is important to take into consideration potential changes in the meaning of sports and in the college preparatory process from the 1980s through the 2000s.Though Ralph McNeal (1999) argues that schools have become more academic over time, sports
have potentially converged with the academic world. Being "well-rounded" has become an imperative in the college admissions process (National School Boards Association 2006), and this may cast sports participation as an accompaniment of scholarly achievement moreso than in earlier decades. Despite improvements in average NAEP mathematics assessment scores for all racial subgroups, the 2004 national average score for 17-year-olds was not significantly different from the score in 1973; the white-black gap in 2004 was only slightly smaller than the gap in 1973 (Perle and Moran 2005). In contrast, math course-taking has changed dramatically from 1978 to 2004, with the percentage of 17-year-olds who took Algebra II having increased from 37 to 53 percent, and the percentage of black 17-year-olds who took Algebra II doubling from 1978 to 2004; in 2004, 72% of white and 67% of black 17-year-olds' highest level math course was Algebra II or higher (Perle and Moran 2005). In addition to math course-taking and other "core courses" such as English and science, foreign language courses are an indicator of a college preparatory course load. The increasingly demanding definition of a college preparatory curriculum (Adelman 2006) was taken into consideration in our study through variable construction choices and by only comparing students to other students from the same decade. If white males are participating in sports as an accompaniment to succeeding academically and black males are participating for other reasons, then the characteristics of athletes should vary by race, as should the impacts of participating. This study addresses changes over time and by race with nationally representative data from the 1980s, 1990s, and 2000s, and specifically focuses on the issue of selection through the use of the methodological technique of propensity score matching.

RESEARCH QUESTIONS

1. How have the high school sports participation rates of black boys compared to white boys since the 1980s?
2. How do sports impact the academic outcomes of black and white boys and has that changed since the 1980s?
3. Are the characteristics that predict sports participation consistent between black and white boys and how has this changed since the 1980s? How might these differences influence the estimated impact of sports?

Data and Methods

Three longitudinal nationally representative data sets from the National Center for Education Statistics (NCES) were employed: the sophomore cohort of High School and Beyond (HS\&B), the National Education Longitudinal Study of 1988 (NELS:88), and the Education Longitudinal Study of 2002 (ELS:2002). Data from $10^{\text {th }}$ and $12^{\text {th }}$ grade student surveys, parent surveys and transcripts was used; with $10^{\text {th }}$ grade cohorts from the springs of 1980 (HS\&B), 1990 (NELS), and 2002 (ELS), the results span the beginnings of three decades. Students who did not participate in both the $10^{\text {th }}$ and $12^{\text {th }}$ grade surveys were filtered from the analytic sample, as were students with invalid weights (only applicable in NELS) (Table 1). Students without transcripts were not filtered since sports participation and course-taking data was also available from the surveys; the transcript and surveys were perceived as complementary data sources. Since the base year in NELS was actually the $8^{\text {th }}$ grade, students who were freshened in NELS' sophomore year were included to maintain comparability with HS\&B and ELS. Variables were always selected and recoded in an effort to maintain consistency across the three datasets.

Table 1. NCES Cohort Information

	HSB	NELS	ELS
8th Grade:			
School year	n / a	$1987-88$	n / a
Sample size	n / a	25,851	n / a
10th Grade:			
School year	$1979-80$	$1989-90$	$2001-02$
Sample size	13,749	18,176	15,360
Schools	1,000	1,012	751
12th Grade:			
School year	$1981-1982$	$1991-92$	$2003-04$
Sample size	14,102	17,161	13,424
Academic Outcomes Sample:			
10th grade participation	BYPART	F2UNIV2C	F1UNIV2A
12th grade participation	FU1PART	F2UNIV2D	F1UNIV2B
All	13,152	13,510	12,652
White boys	3,782	4,546	3,710
Black boys	856	495	740
Weight	FU1WT	F2TRP2WT	F1PNLWT
Propensity Score Sample:			
10th grade participation	BYPART	F2UNIV2C	F1UNIV2A
All	13,749	18,176	15,360
White boys	3,985	5,719	4,339
Black boys	905	730	1,011
Weight	BYWT	F1PNLWT	BYSTUWT

DEPENDENT VARIABLES

Three $12^{\text {th }}$ grade academic outcomes were used to gauge general academic achievement and college readiness: $12^{\text {th }}$ grade math test scores, having taken Algebra II or higher by the $12^{\text {th }}$ grade, and number of foreign language credits by the $12^{\text {th }}$ grade. NCES administered a series of academic tests during both the $10^{\text {th }}$ and $12^{\text {th }}$ grades in all three datasets; it should be noted that changes were made in the content and format of the tests to the end that test scores are not comparable across datasets. The Item Response Theory (IRT) measures of the $12^{\text {th }}$ grade math test scores were chosen since standardized scores are not appropriate in lagged models. Dichotomous measures of math coursetaking were created to indicate whether the student had completed Algebra II or higher by the $12^{\text {th }}$ grade. Because of increases in advanced math course-taking over this time
period, exploratory analysis showed that Algebra II was an appropriate benchmark in all three datasets: low enough to not eclipse significant differences in HS\&B and high enough to not miss significant differences in ELS. The third outcome was a continuous variable measuring the number of foreign language credits completed by the $12^{\text {th }}$ grade; values greater than 0 but less than 0.33 were recoded to zero with the assumption that 0.33 represents a trimester's worth of credit.

INDEPENDENT VARIABLES

Sports Participation Variables

An assortment of measures from $10^{\text {th }}$ and $12^{\text {th }}$ grade student surveys and transcript data (with the exception of HS\&B ${ }^{1}$) were used to create a dichotomous measure of sports participation (Appendix A): ' 1 ' indicating participation in the $12^{\text {th }}$ grade or both the $10^{\text {th }}$ and $12^{\text {th }}$ grades. Exploratory analysis demonstrated that students who indicated participation in only the $12^{\text {th }}$ grade or both the $10^{\text {th }}$ and the $12^{\text {th }}$ grade had similarly positive academic outcomes, in contrast to students who indicated participation in only the $10^{\text {th }}$ grade; since a dichotomous measure of sports participation was requisite for the propensity models, we collapsed $12^{\text {th }}$-grade and $10^{\text {th }}$-and $-12^{\text {th }}$-grade participators and characterized these participators as sports participators. While the main sports variable includes the in-school team and in-school individual sports as detailed in Appendix A, a separate dichotomous variable was created for traditionally female sports, such as cheerleading, dance, etc., because of potentially different processes; small cell sizes

[^0]required that this dichotomous variable indicate participation during $10^{\text {th }}$ and/or $12^{\text {th }}$ grade.

Control Variables

Because of well-documented associations with academic outcomes, and as a preliminary attempt to account for selection into sports, our basic controls included parental education and family structure. Because of divergence in the categories of the NCES parental education variables, the most concise and consistent recoding across all three datasets was three mutually exclusive dichotomous indicators: high school degree or less, some college (reference), college degree or higher. These categories were also substantively meaningful in all three decades despite increasing parental education levels. Family structure was expressed through a dichotomous variable indicating the presence of both the biological father and biological mother in the household. Lastly, the $10^{\text {th }}$ grade math test score (IRT as well) was used as a final control to account for prior academic achievement.

ANALYTIC PLAN

Predicting Academic Outcomes

Our analysis began with simple regression models (OLS for continuous outcome variables and logistic for dichotomous outcome variables) predicting each of the academic outcomes. Theorizing that the process of choosing to participate in sports, as well as the effect of sports, may vary by race, we ran separate models for black boys and white boys so as to have a base of comparison for the race-separate propensity score
models. Pooled models with race-sports interactions were also employed to express the sports effect for black boys relative to white boys. Within both the separate and pooled models, Model 1 estimates the basic effect of sports on the academic outcomes. Model 2 adds controls for parental education and family structure, and Model 3 controls on prior academic achievement with the $10^{\text {th }}$ grade math test score. $10^{\text {th }}-12^{\text {th }}$ grade panel weights were centered and used in every model (Table 1).

Propensity Matching Analysis

As selection is a factor often mentioned within high school sports participation but not adequately accounted for by basic regression models, we used propensity matching in order to compare the academic outcomes of athletes specifically to nonathletes with similar precedent individual and school-level characteristics. Students who did not participate in the $10^{\text {th }}$ grade survey were filtered from this analytic sample. Since the first survey in NELS was administered in the $8^{\text {th }}$ grade, freshened students in the NELS' first follow-up were included to maintain comparability with HS\&B and ELS. Measures of individual-level and school-level characteristics that preceded sports participation (as much as is possible within the constraints of the datasets) were selected (Table 2) and recoded so that the variables and their categories were consistent across all three datasets; freshened survey variables acted as supplements in cases where survey questions that were asked in the $10^{\text {th }}$ grade in HS\&B and ELS were asked during the $8^{\text {th }}$ grade in NELS. Because of the sample size demands of propensity score matching (Rosenbaum and Rubin 1983) and to maintain representativeness, mean and mode
imputation was used to account for missing values on all independent variables except for race and gender. Relevant imputation flags were included in all models.

Propensity scores predicting each student's likelihood of participating in sports based on the wealth of individual and school-level characteristics were outputted through two-level modeling using HLM6 software. All independent variables were grand-mean centered. These models were run separately for black and white boys; depending on the mean characteristics of each subgroup, some independent variables were excluded because of collinearity or for a lack of variation (Table 2). Base year weights ($10^{\text {th }}$ grade) for HS\&B and ELS and the $8^{\text {th }}-10^{\text {th }}$ grade panel weight for NELS were centered and used at the individual level in every model (Table 1). The models would not run in the HLM6 software until weights of value ' 0 ' (NELS) were recoded to ' 0.01 .'

Each white male and black male subgroup within each dataset was divided into smaller 'propensity ranks' until there was no significant difference in the propensity scores within each rank, with white boys requiring between 9 and 11 ranks and black boys requiring between 5 and 8 . The balance of each of these ranks was examined by testing the significance of the difference in the means of each independent variable between athletes and non-athletes within each rank. HLM6 was used to predict each academic outcome again with controls for the propensity score and each propensity rank (with Rank0 as the reference variable). The resulting sports coefficients allowed us to better ascertain if sports are a predictor of positive academic outcomes, or if the sports effect is actually a reflection of characteristics that the athletes possessed before the sports treatment. Lastly, to better discern the significant predictors of sports participation across race and time, more parsimonious models were also run in HLM6 with school-
level controls and independent variables within the themes of parental income, parental education, academic orientation and prior academic achievement.

Table 2. Variables Used in HLM Models Predicting Sports Participation

Family and Background	Academics
Age	Academic Habits
Religion	Time on homework per week
Catholic	Forgets paper or pencil
Jewish ${ }^{4}$	Forgets book
Other religion	Forgets homework
No religion	Late to school
Protestant (reference)	Academic Achievement
English First Language Spoken	Grades so far in high school
Physical and Mental Disabilities	Remedial English
Specific learning disability	Remedial math
Visual handicap	High school program
Hard of hearing ${ }^{4}$	Sophomore reading standardized score
Deafness ${ }^{4}$	Educational Expectations
Speech disability	After high school plans per father
Orthopedic handicap ${ }^{4}$	After high school plans per mother
Other health impairment ${ }^{3}$	After high school plans per friends/relatives
Other disability ${ }^{1,2}$	Schooling respondent thinks will get
Other physical disability ${ }^{1,3,4}$	Schooling mother wants respondent to get
Physical condition which limits you ${ }^{2,3}$	Extracurricular Activities
Mental retardation ${ }^{1,4}$	Band, orchestra, chorus, etc.
Emotional ${ }^{1}$	Hobby clubs
Parent's Highest Level of Education	Subject matter clubs
Mom Works Outside of the Home	Vocational ed clubs
Family Structure	Community youth clubs
Biological mom and biological dad	Junior achievement clubs
Biological mom and other male	Hours worked per week
Biological dad and other female ${ }^{4}$	
Only biological mom	School Level Characteristics
Only biological dad	Percent minority students
Other family structure (reference)	Control
Other People in Household	Catholic
Grandparents in household	Other private
Respondent's children in household	Public (reference)
Other relatives in household	Region
Non-relatives in household	West
Family Income	Midwest
Family Capital	Northeast
Possessions: Daily newspaper	South (reference)
Possessions: Typewriter ${ }^{3}$	Urbanicity
Possessions: Computer ${ }^{1,2}$	Urban
Possessions: Electric dishwasher	Rural
Possessions: More than 50 books	Suburban (reference)
Room of own	
1 - Not available in HSB	
2 - Not available in NELS	
3 - Not available in ELS	
4 - Excluded for the subgroups in which mean to	

Results

DESCRIPTIVE RESULTS

High school sports participation has increased over the years for both black and white boys, but black boys have consistently participated at higher rates than white boys (Table 3). Parental education levels have increased for both groups, but higher proportions of parents of white boys than black boys have bachelor degrees or more, and lesser proportions of parents of white boys have high school degrees or less in all three decades. The proportion of boys who live with both of their biological parents has decreased over the years, but higher proportions of white boys than black boys live with both of their biological parents in all three datasets. This suggests that fundamental differences in the sociodemographic characteristics of black and white boys endure, potentially differentiating the propensity to participate in sports by race, as well as the effect of sports on high school academic outcomes that predict college readiness.

	$\begin{gathered} \hline \text { HSB: } \mathbf{1 9 8 0 - 8 2} \\ (\mathrm{n}=13,152) \\ \hline \end{gathered}$				NELS: 1990-92$(\mathrm{n}=13,510)$				$\begin{gathered} \hline \text { ELS: 2002-04 } \\ (\mathrm{n}=15,360) \\ \hline \end{gathered}$			
	White Boys$\mathrm{n}=3782$		$\begin{gathered} \hline \text { Black Boys } \\ \mathrm{n}=856 \\ \hline \end{gathered}$		White Boys$\mathrm{n}=4546$		$\begin{gathered} \hline \text { Black Boys } \\ \mathrm{n}=495 \\ \hline \end{gathered}$		White Boys$\mathrm{n}=3710$		$\begin{gathered} \text { Black Boys } \\ \mathrm{n}=740 \end{gathered}$	
	Mean	SD										
Sports and Cheerleading Participation Late HS sports participation	0.59	0.57	0.68	0.44	0.66	0.48	0.68	0.56	0.67	0.51	0.72	0.48
Any cheerleading, dance, etc. participation Parents' Highest Level of Education	0.06	0.26	0.06	0.22	0.03	0.18	0.08	0.32	0.06	0.26	0.09	0.31
4-year college degree or higher	0.18	0.43	0.10	0.26	0.38	0.49	0.17	0.45	0.44	0.53	0.34	0.51
Some college	0.43	0.55	0.42	0.44	0.39	0.49	0.53	0.59	0.36	0.52	0.43	0.53
High school degree or less Family Structure	0.39	0.54	0.48	0.45	0.23	0.43	0.30	0.54	0.20	0.43	0.23	0.45
Lives with biological mother and father Academic Control and Outcomes	0.77	0.47	0.45	0.45	0.68	0.47	0.45	0.59	0.67	0.51	0.36	0.51
10th grade math test score	14.91	11.12	5.67	7.09	46.71	13.50	35.65	12.90	42.24	12.28	31.22	10.71
12th grade math test score	17.13	12.14	7.58	8.06	51.77	13.98	39.70	13.47	53.23	15.95	40.09	13.39
Completed Algebra II or higher by 12th grade	0.57	0.57	0.43	0.46	0.65	0.48	0.39	0.58	0.70	0.49	0.58	0.53
Foreign language credits by 12th grade	0.82	1.31	0.51	0.81	1.59	1.35	1.12	1.34	0.78	0.44	0.73	0.48

Math test scores cannot be compared across the decades because of changes in the tests (Table 3), but within all three decades, white boys had higher test scores than black boys in both the $10^{\text {th }}$ and $12^{\text {th }}$ grades. The proportion of white boys having completed Algebra II or higher by the $12^{\text {th }}$ grade has increased over the decades, while the proportion of black boys taking high-level math courses actually decreased from the 1980s to 1990s, but then increased into the 2000s. A higher proportion of white boys complete high-level math courses than black boys in all three decades. Both black and white boys experienced an increase in number of foreign language credits from the 1980s to the 1990s and then a decrease from the 1990s to the 2000s. White boys have completed a higher average number of credits in foreign languages than black boys by the $12^{\text {th }}$ grade throughout the decades. Consistent with Adelman's (2006) research, our exploratory analysis shows that students are experiencing higher levels of academic preparedness upon high school graduation, especially in the case of advanced math course-taking; insofar as general trends, a gap in the academic preparedness of black boys versus white boys persists.

MULTIVARIATE ANALYSES

Table 4 summarizes the sports coefficient results from the race-separate and pooled models for all three academic outcomes, as well as the models with comparable control groups constructed by matching propensity scores. Within each outcome, the direction and significance of the sports coefficients are shown for white boys, black boys relative to white boys, and then black boys. The full models are available in Appendix B.

$12{ }^{\text {th }}$ Grade Math Test Scores

In the most basic model, enduring sports participation had a significant and positive effect on $12^{\text {th }}$ grade math test scores in 1982, 1992 and 2004 for white boys, but only in 1982 for black boys; the effect of sports on math test scores was significantly less for black boys than white boys in all three decades. After controls for family and prior academics, the only remaining significant sports effects were for white boys in 1982 and 1992, and there were no remaining significant differences between black and white boys in the sports effect. With propensity score matching, no significant positive effects remained and a significant negative effect actually emerged for white boys in 1992. The absolute lack of a sports effect for black boys, with the exception of 1982, suggests that the association between sports and academics is weaker for black boys; but once family and prior academic history is accounted for, there is no significant difference in the sports effect between black and white boys. In fact, with propensity score matching accounting for a wide variety of background and school-level characteristics, the only remaining significant effect was actually a negative effect for boys in 1992, which suggests that selection does play a fundamental role in the positive effect of sports.

Having Taken Algebra II or Higher by the $12{ }^{\text {th }}$ Grade

Similar to the results for math test scores, sports had a significant and positive effect on math course-taking in all three datasets for white boys but only in 1982 for black boys. In the most basic model, the effect of sports on math course-taking was significantly less for black boys than white boys in 1992 and 2004. Parental and academic controls explained the only significant sports effect for black boys (1982), but
the significant positive sports effects remained for white boys in all three decades. With parental and academic controls, the sports effect for black boys was significantly less than for white boys only in 1992. After propensity score matching, significant sports effects still remained in 1982 for both black and white boys and in 2004 for white boys. There is a persistent positive association between high school sports and math coursetaking, as evident through sports effects that endured within comparable control groups created by matching propensity scores. Similar to math test scores, sports had a comparably significant positive effect for both black and white boys only in 1982, while the positive effect of sports have been more consistent for white boys across the three decades.

Foreign Language Credits Taken by the $12^{\text {th }}$ Grade

Sports again had a significant and positive effect on foreign language credits in the basic model in all three decades for white boys, but only in 1982 and 2004 for black boys; the effect of sports was also significantly less for black boys only in 1992. After parental and academic controls, all significant sports effects remained with the exception of black boys in 1982; the effect of sports was again significantly less for black boys only in 1992. The only significant sports effect remaining after controlling with a propensity score was the positive effect for white boys in 2004. The results for foreign language credits are consistent insofar as sports seemed to be more of a positive academic effect for black boys in 1982, but have consistently been so for white boys. The one enduring sports effect (2004 for white boys) gives credence to the idea that sports have converged with academics, specifically college-going and only for white boys.

Sports Predictors

Table 5 summarizes results from the parsimonious models that used only select propensity variables to highlight significant associations between certain characteristics and the likelihood of participating in sports; full models are available in Appendix C. Race differences in the predictivity of these characteristic may contribute to understanding the differences in the sports effect by race.

	HSB: 1980-82						NELS: 1990-92						ELS: 2002-04					
	Logistic Regressions Predicting Having Participated in Sports through the 12th Grade																	
	White boys			Black boys relative to white boys			White boys			Black boys relative to white boys			White boys			Black boys relative to white boys		
	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE
How is each of these characteristics associated with choosing to participate in sports?																		
Family income	0.21	***	0.04	-0.18		0.14	0.45	***	0.04	-0.16	+	0.14	0.37	***	0.04	-0.08		0.11
High level of parental education	0.34	***	0.09	0.23		0.41	0.5	***	0.09	0.5	*	0.41	0.37	***	0.07	-0.35	*	0.17
Student educational expectations	0.23	***	0.03	-0.07		0.07	0.31	***	0.03	-0.27	***	0.07	0.19	***	0.03	-0.19	**	0.07
Good grades	0.41	***	0.05	-0.28	*	0.13	0.5	***	0.05	-0.44	***	0.13	0.31	***	0.05	-0.34	***	0.13

There was no significant difference in any of the datasets between black and white boys in the positive association of income with sports participation (Table 5). In 1982, there were no significant differences between black and white boys in the positive association of high levels of parental education with sports participation. In 1992, the estimated effect of high parental education levels on being a high school athlete was significantly larger for black boys than white boys. In contrast, by 2004, the estimated effect of high parental education levels on being a high school athlete was significantly smaller for black boys than white boys. In 1982, there were no significant differences between black and white boys in high educational expectations predicting sports participation, while in 1992 and 2004, high educational expectations were significantly less predictive of sports participation for black boys than for white boys. Having high grades was significantly
less predictive of sports participation for black boys than for white boys in all three decades.

Conclusion

Black boys continue to participate in high school sports at higher rates than white boys, but sports have positive academic associations for white boys on a more enduring and broad level. A basic association between sports and positive academic outcomes was evident for black boys in 1982, but was consistent across all three decades for white boys. The basic sports effect was often significantly less for black boys than for white boys. If not explained by parental and academic controls, the sports effect for both black and white boys was often accounted for through propensity score matching. The significant sports effects endured with propensity score matching in three out of nine instances for white boys (math course-taking in 1982 and 2004 and foreign language credits in 2004), but only one out of nine for black boys (math course-taking in 1982). Sports are most consistently associated with math course-taking, which is a positive indicator of general academic achievement and college-going. The fact that the sports effect endured for both math course-taking and foreign language credits in 2004 may suggest that the association between sports and academics is increasingly a college-going mechanism, at least for white boys. In sum, selection does account for considerable amount of the academic benefits of sports, but the sports effects that do endure beyond intensive controls are most prevalent for white males.

In addition to sport type and structural differences in the sports experience by race, racial differences in individual characteristics that predict sports participation may be a partial explanation for differences in the effects of sports by race. In 1982, there were no significant differences between black and white boys in the positive predictive
power of parental education and income for sports participation, nor in the positive predictivity of having high educational expectations. 1982 was also the year in which black boys experienced a benefit from sports comparable to that of white boys. The lack of significant difference across races in the association between parental income and sports participation remained consistent through 1992 and 2004; variation occurred though in the association between parental education and sports participation for black boys. In 1992, having educated parents was significantly more predictive of sports participation for black boys, but the student having high educational expectations was significantly less predictive of sports participation for black boys. This may suggest that old notions of sports as social mobility lingered, with higher SES black parents encouraging sports but not necessarily as a means of going to college. By 2004, having educated parents was significantly less predictive of sports for black boys, and the student having high educational expectations was still significantly less predictive of sports participation for black boys. This convergence of black parent and student in 2004 may suggest that the old model of sports as social mobility had abated, but that the new model, with sports being associated with college-going, was still not as relevant for black boys as for white boys. In addition to structural aspects of sports, the racial variation in both the parental and individual characteristics that describe black and white male athletes contributes to explaining the lesser academic effect of sports for black boys.

There are several limitations to this study. The breadth of this study, involving three large datasets and spanning 24 years, and our goal of maintaining comparability across the datasets resulted in variable selection and recoding choices that would not be required if the study had been conducted on only one of the datasets. For example, racial
differences in the sport type might explain some of the differences in the sports effect, but measures to that degree of specificity were not available in HS\&B. It is also possible that there is more variation within subgroups, by socioeconomic status, for example, than this study illuminates. This research should also be extended to females and other racial groups, which is already underway.

This study also did not sufficiently account for structural differences in the implementation of sports. For example, the fact that students are selected into high school sports by ability is a blatant instance of selection bias, as well as something that casts the psychosocial and social benefits of sports into a different light than those of other academic and extracurricular experiences. In contrast to Braddock's (1981:347) observation that "the most important finding here is not that there are differences between blacks and whites in educational benefits associated with athletic participation, but that such payoffs, contrary to popular opinion, accrue to black youth as well as white youth," it is important to determine why these differences exist and what policy changes can be made to ensure the equitable implementation of high school sports. The two major contributions of our study include the findings that the positive academic effect of sports has enduringly favored white males and that selection generally plays a central role in the effect of sports on academic outcomes. Both of these findings corroborate the "cumulative advantage hypothesis" and the "reinforcement hypothesis." In order to sufficiently address the latter through educational policy revisions, more research must be conducted on variation across the structural components of high school sports.

Appendix A - Sports Variable Construction

HS\&B $10{ }^{\text {TH }}$ Grade

INDSPRT10 - Participated in individual sport in school CSSC Code 360111 'Sports, Individual'
CSSC Code 360151 'Track and Field’ - ELS includes track within individual sports: see F1S41AG
SWIM10 - Swimming
CSSC Code 360161 'Aquatics' - ELS and HS\&B do not have a swim team variable though NELS does
TMSPRT10 - Participated in team sport in school
CSSC Code 360121 'Sports, Team'
GRLSPRT10 - Participated in a typically female sport in school
CSSC Code 360131 'Gymnastics'
DANCE10 - Dance
CSSC Codes:
500300 Dance, other
500311 Modern Dance for beginners 9
500312 Modern Dance for beginners 10
500313 Modern Dance for beginners 11
500314 Modern Dance for beginners 12
500321 Modern Dance 9, intermediate
500322 Modern Dance 10, intermediate
500323 Modern Dance 11, intermediate
500324 Modern Dance 12, intermediate
500331 Dance 9 advanced
500332 Dance 10 advanced
500333 Dance 11 advanced
500334 Dance 12 advanced
500341 Performing dance group 9
500342 Performing dance group 10
500343 Performing dance group 11
500344 Performing dance group 12
500351 Ballet and Jazz for beginners 9
500352 Ballet and Jazz for beginners 10
500353 Ballet and Jazz for beginners 11
500354 Ballet and Jazz for beginners 12
500361 Ethnic Dance
500371 Square Dance
500381 Aerobic
CHRDRLL10 - Cheerleading/Drill Team
CSSC Code 330121 'Pep Squad (Cheerleading)'
CSSC Code 360141 'Drill Team'
BB032C

HS\&B $12{ }^{\text {TH }}$ Grade

INDSPRT12 - Participated in individual sport in school
CSSC Code 360111 'Sports, Individual'
CSSC Code 360151 'Track and Field' - ELS includes track within individual sports: see F1S41AG
SWIM12 - Swimming
CSSC Code 360161 'Aquatics' - ELS and HS\&B do not have a swim team variable though NELS does
TMSPRT12 - Participated in team sport in school CSSC Code 360121 'Sports, Team'
GRLSPRT12 - Participated in a typically female sport in school
CSSC Code 360131 'Gymnastics’
DANCE12 - Dance
CSSC Codes:
500300 Dance, other
500311 Modern Dance for beginners 9
500312 Modern Dance for beginners 12
500313 Modern Dance for beginners 11
500314 Modern Dance for beginners 12
500321 Modern Dance 9, intermediate
500322 Modern Dance 12, intermediate
500323 Modern Dance 11, intermediate
500324 Modern Dance 12, intermediate
500331 Dance 9 advanced
500332 Dance 12 advanced
500333 Dance 11 advanced
500334 Dance 12 advanced
500341 Performing dance group 9
500342 Performing dance group 12
500343 Performing dance group 11
500344 Performing dance group 12
500351 Ballet and Jazz for beginners 9
500352 Ballet and Jazz for beginners 12
500353 Ballet and Jazz for beginners 11
500354 Ballet and Jazz for beginners 12
500361 Ethnic Dance
500371 Square Dance
500381 Aerobic
CHRDRLL12 - Cheerleading/Drill Team
CSSC Code 330121 'Pep Squad (Cheerleading)'
CSSC Code 360141 'Drill Team'
FY38C

NELS $10{ }^{\text {TH }}$ GRADE

```
INDSPRT10 - Participated in individual sport in school
    CSSC Code 360111 'Sports, Individual'
    CSSC Code 360151 'Track and Field' - ELS includes track within individual sports: see
        F1S41AG
    F1S41AG (interscholastic and intramural)
    SWIM10 - Swimming
        CSSC Code 360161 'Aquatics' - ELS does not have a swim team variable though NELS
                        does
        F1S41AE (intramural and interscholastic)
TMSPRT10 - Participated in team sport in school
    CSSC Code 360121 'Sports, Team'
    F1S41AF (other team sport, intramural and interscholastic)
    BSSFTBLL10 - Baseball/Softball
        F1S41AA (intramural and interscholastic)
    BSKTBLL10 - Basketball
            F1S41AB (intramural and interscholastic)
    FTBLL10 - Football
            F1S41AC (intramural and interscholastic)
    SCCR10 - Soccer
            F1S41AD (intramural and interscholastic)
GRLSPRT10 - Participated in a typically female sport in school
    CSSC Code 360131 'Gymnastics'
    DANCE10 - Dance
        CSSC Codes
        5 0 0 3 0 0 \text { Dance, other}
        5 0 0 3 1 1 \text { Modern Dance for beginners } 9
        5 0 0 3 1 2 ~ M o d e r n ~ D a n c e ~ f o r ~ b e g i n n e r s ~ 1 0 ~
        500313 Modern Dance for beginners }1
        5 0 0 3 1 4 \text { Modern Dance for beginners } 1 2
        500321 Modern Dance 9, intermediate
        5 0 0 3 2 2 \text { Modern Dance 10, intermediate}
        5 0 0 3 2 3 \text { Modern Dance 11, intermediate}
        5 0 0 3 2 4 \text { Modern Dance 12, intermediate}
        5 0 0 3 3 1 \text { Dance } 9 \text { advanced}
        5 0 0 3 3 2 \text { Dance } 1 0 \text { advanced}
        5 0 0 3 3 3 \text { Dance 11 advanced}
        5 0 0 3 3 4 \text { Dance } 1 2 \text { advanced}
        5 0 0 3 4 1 \text { Performing dance group } 9
        5 0 0 3 4 2 \text { Performing dance group } 1 0
        5 0 0 3 4 3 \text { Performing dance group } 1 1
        500344 Performing dance group 12
        5 0 0 3 5 1 ~ B a l l e t ~ a n d ~ J a z z ~ f o r ~ b e g i n n e r s ~ 9 ~
        5 0 0 3 5 2 \text { Ballet and Jazz for beginners } 1 0
        5 0 0 3 5 3 \text { Ballet and Jazz for beginners } 1 1
        5 0 0 3 5 4 \text { Ballet and Jazz for beginners } 1 2
        500361 Ethnic Dance
        5 0 0 3 7 1 ~ S q u a r e ~ D a n c e ~
        5 0 0 3 8 1 ~ A e r o b i c ~
    CHRDRLL10 - Cheerleading/Drill Team
        CSSC Code 330121 'Pep Squad (Cheerleading)'
        CSSC Code 360141 'Drill Team'
        F1S41AH (cheer, intramural and interscholastic)
        F1S41AI (drill, intramural and interscholastic)
```


NELS $12{ }^{\text {TH }}$ Grade

INDSPRT12 - Participated in individual sport in school CSSC Code 360111 'Sports, Individual'
CSSC Code 360151 'Track and Field' - ELS includes track within individual sports: see F1S41AG
F2S30AB (interscholastic)
F2S30BK (intramural)
SWIM12 - Swim
CSSC Code 360161 'Aquatics' - ELS does not have a swim team variable though NELS does
TMSPRT12 - Participated in team sport in school
CSSC Code 360121 'Sports, Team'
F2S30AA (interscholastic)
F2S30BJ (intramural)
GRLSPRT12 - Participated in a typically female sport in school
CSSC Code 360131 'Gymnastics’
DANCE12 - Dance
CSSC Codes:
500300 Dance, other
500311 Modern Dance for beginners 9
500312 Modern Dance for beginners 12
500313 Modern Dance for beginners 11
500314 Modern Dance for beginners 12
500321 Modern Dance 9, intermediate
500322 Modern Dance 12, intermediate
500323 Modern Dance 11, intermediate
500324 Modern Dance 12, intermediate
500331 Dance 9 advanced
500332 Dance 12 advanced
500333 Dance 11 advanced
500334 Dance 12 advanced
500341 Performing dance group 9
500342 Performing dance group 12
500343 Performing dance group 11
500344 Performing dance group 12
500351 Ballet and Jazz for beginners 9
500352 Ballet and Jazz for beginners 12
500353 Ballet and Jazz for beginners 11
500354 Ballet and Jazz for beginners 12
500361 Ethnic Dance
500371 Square Dance
500381 Aerobic
CHRDRLL12 - Cheerleading/Drill Team
CSSC Code 330121 'Pep Squad (Cheerleading)'
CSSC Code 360141 'Drill Team'
F2S30AC (interscholastic)

ELS $10{ }^{\text {TH }}$ Grade

INDSPRT10 - Participated in individual sport in school
CSSC Code 360111 'Sports, Individual'
CSSC Code 360151 'Track and Field' - ELS includes track within individual sports: see F1S41AG
BYSOLOSP (composite interscholastic)
BYS39G (intramural)
SWIM10 - Swimming
CSSC Code 360161 'Aquatics' - ELS does not have a swim team variable though NELS does
TMSPRT10 - Participated in team sport in school

CSSC Code 360121 'Sports, Team'
BYTEAMSP (composite interscholastic) BYS39F (intramural)
BYS40FC (other team sport, junior varsity)
BYS40FD (other team sport, varsity)
BYS40FE (other team sport, varsity captain/cocaptain)
BSSFTBLL10- Baseball/Softball (these are combined in NELS)
BYBASEBL (composite
interscholastic)
BYS39A (intramural)
BYSOFTBL (composite
interscholastic)
BYS39B (intramural)
BSKTBLL10 - Basketball
BYBSKTBL (composite
interscholastic)
BYS39C (intramural)
FTBLL10 - Football
BYFOOTBL (composite
interscholastic)
BYS39D (intramural)
SCCR10 - Soccer
BYSOCCER (composite interscholastic)
BYS39E (intramural)
GRLSPRT10 - Participated in a typically female sport in school
CSSC Code 360131 'Gymnastics'
DANCE10 - Dance
CSSC Codes:
500300 Dance, other
500311 Modern Dance for beginners 9
500312 Modern Dance for beginners 10
500313 Modern Dance for beginners 11
500314 Modern Dance for beginners 12
500321 Modern Dance 9, intermediate
500322 Modern Dance 10, intermediate
500323 Modern Dance 11, intermediate
500324 Modern Dance 12, intermediate
500331 Dance 9 advanced
500332 Dance 10 advanced
500333 Dance 11 advanced
500334 Dance 12 advanced
500341 Performing dance group 9
500342 Performing dance group 10
500343 Performing dance group 11
500344 Performing dance group 12
500351 Ballet and Jazz for beginners 9
500352 Ballet and Jazz for beginners 10
500353 Ballet and Jazz for beginners 11
500354 Ballet and Jazz for beginners 12
500361 Ethnic Dance
500371 Square Dance

ELS 12 ${ }^{\text {TH }}$ Grade

INDSPRT12 - Participated in individual sport in school CSSC Code 360111 'Sports, Individual'
CSSC Code 360151 'Track and Field' - ELS includes track within individual sports: see F1S41AG
SWIM12 - Participated in swimming
CSSC Code 360161 'Aquatics' - ELS does not have a swim team variable though NELS does
TMSPRT12 - Participated in team sport in school CSSC Code 360121 'Sports, Team’
GRLSPRT12 - Participated in a typically female sport in school CSSC Code 360131 'Gymnastics'
DANCE12 - Dance
CSSC Codes:
500300 Dance, other
500311 Modern Dance for beginners 9
500312 Modern Dance for beginners 12
500313 Modern Dance for beginners 11
500314 Modern Dance for beginners 12
500321 Modern Dance 9, intermediate
500322 Modern Dance 12, intermediate
500323 Modern Dance 11, intermediate
500324 Modern Dance 12, intermediate
500331 Dance 9 advanced
500332 Dance 12 advanced
500333 Dance 11 advanced
500334 Dance 12 advanced
500341 Performing dance group 9
500342 Performing dance group 12
500343 Performing dance group 11
500344 Performing dance group 12
500351 Ballet and Jazz for beginners 9
500352 Ballet and Jazz for beginners 12
500353 Ballet and Jazz for beginners 11
500354 Ballet and Jazz for beginners 12
500361 Ethnic Dance
500371 Square Dance
500381 Aerobic
CHRDRLL12 - Cheerleading/Drill Team
CSSC Code 330121 'Pep Squad (Cheerleading)'
CSSC Code 360141 'Drill Team'

Appendix B - Regression Models Predicting Academic Outcomes

$12{ }^{\text {TH }}$ Grade Math Test ScOre - Race-Separate Models

* $p<.05$, ** $p<.01$, *** $p<.001$

OLS Regression Predicting 12th Grade Math Test Scores
ELS: 2004 ($\mathrm{n}=12,652$)

									200	=12,65								
				ite Boy	S (n	3710							ack Boy	ys (n	=740)			
					$\begin{aligned} & \text { odel } \\ & =369 \end{aligned}$			$\begin{aligned} & \text { odel } \\ & =369 \end{aligned}$			$\begin{aligned} & \hline \text { lodel } \\ & \mathrm{n}=731 \end{aligned}$			$\begin{aligned} & \text { odel } \\ & =731 \end{aligned}$			$\begin{aligned} & \text { odel } \\ & =731 \end{aligned}$	
	B	Sig	SE	B	Sig	SE		Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE
Intercept	50.88	***	0.42	47.53	***	0.57	5.08	***	0.49	40.39	***	0.89	37.43	***	1.05	5.72	***	0.83
Sports Participation Late HS sports participation	3.47	***	0.51	2.10		0.49	0.23		0.24	-0.05		1.03	-0.45		1.00	-0.22		0.48
Cheerleading, Dance, etc. Participation 10th and/or 12th grade	0.30		0.99	0.60		0.93	0.44		0.46	-3.35	*	1.61	---	*		----		0.76
Neither grade (ref)	---			---			---			---			---			---		
Parents' Highest Level of Education 4-year college degree or higher				6.47	***		1.24		0.26				5.64	***		0.85	+	0.51
Some college (ref)				---			---						---			---		
High school degree or less Family Structure				-5.19	***	0.64	-0.91	**	0.32				0.48		1.16	-0.02		0.56
Lives with biological mother and father				3.62	***	0.49	0.52	*	0.24				3.39	***		0.84	+	0.46
Other family structure (ref)				---			---						---			---		
Previous Academic Control 10th grade math test score							1.12	***								1.09	***	0.02
R-Square	0.01			0.12			0.78			0.01			0.07			0.78		

$12^{\text {TH }}$ Grade Math Test Score - Pooled Models

Having Taken Algebra II Or Higher by 12Th Grade - Race-Separate Models

* $p<.05,{ }^{* *} p<.01,{ }^{* * *} p<.001$

Having Taken Algebra II OR Higher by $12{ }^{\text {TH }}$ Grade - Pooled Models

Number of Foreign Language Credits by $12{ }^{\text {TH }}$ Grade - Race-Separate Models

OLS Regression Predicting Foreign Language Credits HSB: 1982 ($n=13,152$)																		
	White Boys ($\mathrm{n}=3782$)									Black Boys ($\mathrm{n}=856$)								
	$\begin{gathered} \hline \text { Model 1 } \\ \mathrm{n}=2891 \end{gathered}$			$\begin{gathered} \text { Model 2 } \\ \mathrm{n}=2663 \end{gathered}$			$\begin{gathered} \hline \text { Model } 3 \\ \mathrm{n}=2530 \end{gathered}$			Model 1$\mathrm{n}=583$			Model 2$\mathrm{n}=504$			$\begin{gathered} \hline \text { Model } 3 \\ n=466 \end{gathered}$		
Intercept	B	Sig	SE		Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE
	0.69	***	0.03	0.79	***	0.06	0.12	+	0.07	0.50	***	0.07	0.57	***	0.10	0.27	*	0.11
Sports Participation Late HS sports participation	0.34	***	0.05	0.27	***	0.05	0.11	*		0.18	*	0.08	0.11		0.09	0.06		0.09
Early or no HS sports participation (ref)	---			---			---			---			---			---		
Cheerleading, Dance, etc. Participation 10th and/or 12th grade	0.02		0.09	-0.02		0.10	0.07		0.09	-0.39	*		-0.44	**		-0.34	*	0.16
Neither grade (ref)	---			---			---			---			---			---		
Parents' Highest Level of Education 4 -year college degree or higher				0.44	***		0.27	***					0.35	*		0.25	+	0.14
Some college (ref)				---			---						---			---		
High school degree or less				-0.40	***	0.05	-0.25	***	0.05									
Family Structure Lives with biological mother and father				0.08		0.06	0.00		0.05				0.21	*	0.08	0.24	**	0.08
Other family structure (ref)				---			---						---			---		
Previous Academic Control 10th grade math test score							0.05	***								0.05	***	0.00
R-Square	0.02			0.08			0.21			0.12			0.07			0.22		

OLS Regression Predicting Foreign Language CreditsNELS: $1992(\mathrm{n}=13,510)$																		
Intercept	White Boys ($\mathrm{n}=4546$)									Black Boys ($\mathrm{n}=495$)								
	$\begin{gathered} \hline \text { Model } 1 \\ \mathrm{n}=4546 \end{gathered}$			$\begin{gathered} \text { Model 2 } \\ \mathrm{n}=4519 \end{gathered}$			$\begin{gathered} \text { Model } 3 \\ \mathrm{n}=4380 \end{gathered}$			$\begin{gathered} \hline \text { Model } 1 \\ \mathrm{n}=495 \end{gathered}$			$\begin{gathered} \text { Model } 2 \\ \mathrm{n}=486 \end{gathered}$			$\begin{gathered} \hline \text { Model 3 } \\ \mathrm{n}=469 \end{gathered}$		
	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE
	1.25	***	0.03	1.07	***	0.05	-0.76	***	0.07	1.22	***	0.09	1.17	***	0.11	-0.64	***	0.19
Sports Participation Late HS sports participation	0.51	***	0.04	0.37		0.04	0.29		0.04	-0.06		0.11	-0.09		0.11	0.10		0.10
Early or no HS sports participation (ref)	---			---			---			---			---			---		
Cheerleading, Dance, etc. Participation 10th and/or 12th grade	-0.25	*	0.11	-0.21	+	0.11	-0.09		0.10	-0.71	***	0.19	-0.65	***	0.19	-0.31	+	0.16
Neither grade (ref)	---			---			---			---			---			---		
Parents' Highest Level of Education 4 -year college degree or higher				0.70		0.03	0.47		0.04				0.56	***	0.14	0.25	+	0.13
Some college (ref)				---			---						---			---		
High school degree or less				-0.20	***	0.05	-0.05		0.05				-0.17		0.11	-0.10		0.10
Family Structure Lives with biological mother and father							-0.03		0.04				0.02		0.10	-0.07		0.09
Other family structure (ref)				---			---						---			---		
Previous Academic Control																		
10th grade math test score							0.04	***	0.00							0.05	***	0.00
R-Square	0.03			0.12			0.29			0.03			0.08			0.30		

$$
\text { * } p<.05,{ }^{* *} p<.01, \text { *** } p<.001
$$

OLS Regression Predicting Foreign Language Credits ELS: 2004 ($\mathrm{n}=12,652$)																		
	White Boys ($\mathrm{n}=3710$)									Black Boys ($\mathrm{n}=740$)								
	$\begin{gathered} \hline \text { Model } 1 \\ n=3524 \end{gathered}$			$\begin{gathered} \text { Model } 2 \\ \mathrm{n}=3524 \end{gathered}$			$\begin{gathered} \text { Model } 3 \\ \mathrm{n}=3524 \end{gathered}$			$\begin{gathered} \hline \text { Model 1 } \\ \mathrm{n}=674 \end{gathered}$			$\begin{gathered} \text { Model 2 } \\ \mathrm{n}=674 \end{gathered}$			$\begin{gathered} \hline \text { Model } 3 \\ \mathrm{n}=674 \end{gathered}$		
	B	Sig	SE		Sig	SE		Sig	SE	B	Sig	SE	B	Sig	SE	B	Sig	SE
Intercept	0.68	***	0.01	0.62	***	0.02	0.07	**	0.03	0.65	***	0.03	0.63	***	0.04	0.17	**	0.06
Sports Participation Late HS sports participation Early or no HS sports participation (ref)	0.15	***	0.01	0.12		0.01	0.10		0.01	0.11	**	0.04	0.10	**		0.11	**	0.04
Cheerleading, Dance, etc. Participation 10th and/or 12th grade	-0.01		0.03	0.00		0.03	0.00		0.02	-0.06		0.06	-0.06		0.06	-0.01		0.06
Neither grade (ref)	---			---			---			---			---			---		
Parents' Highest Level of Education 4 -year college degree or higher				0.11		0.02	0.04						0.11	**		0.04		0.04
Some college (ref)				---			---						---			---		
High school degree or less Family Structure				-0.13	***	0.02	-0.08	***	0.02				-0.09	*	0.04	-0.10	*	0.04
Lives with biological mother and father				0.09	***	0.01	0.05	***	0.01				0.05		0.04	0.01		0.03
Other family structure (ref)				---			---						---			---		
Previous Academic Control 10th grade math test score							0.01	***								0.02	***	0.00
R-Square	0.03			0.09			0.23			0.01			0.05			0.16		

Appendix C - Regression Models Predicting Sports Participation

Parental Income and Education

Logistic Regression	Predic HSB	$\begin{aligned} & \text { cting } \\ & \text { B: } 1982 \end{aligned}$		$\begin{aligned} & 1 \mathrm{~Pa} \\ & \hline 152) \end{aligned}$	ipat NE	$\begin{aligned} & \text { d in } \mathrm{Sk} \\ & \mathrm{~S}: 1992 \end{aligned}$; thro	the EL	12th : 2004		
		Boys (n Mode				Boys (n Mode	$\begin{aligned} & =908 \\ & 11 \end{aligned}$			Boys (n Mod	$\begin{aligned} & =764 \\ & 11 \end{aligned}$	
		$\mathrm{n}=52$				$\mathrm{n}=74$				$\mathrm{n}=70$		
	B	$\operatorname{Exp}(B)$	Sig	SE	B	$\operatorname{Exp}(B)$	Sig	SE	B	$\operatorname{Exp}(B)$	Sig	SE
Intercept	0.50		***	0.05	0.38		***	0.05	0.54		***	0.04
Race												
Black	0.42	1.52	***	0.13	0.01	1.01		0.13	0.48	1.62	***	0.11
Other Race	0.05	1.05		0.18	-0.09	0.91		0.18	0.20	1.22	*	0.10
White (ref)	--	--			--	--			--	--		
Parents' Highest Level of Education												
High: BA or higher	0.34	1.40	***	0.09	0.50	1.65	***	0.09	0.37	1.45	***	0.07
Some college (ref)	--	--			--	--			--	--		
Low: HS degree or lower	-0.34	0.71	**	0.07	-0.30	0.74	***	0.07	-0.21	0.81	**	0.08
Imputation flag	-0.27	0.76	**	0.09	0.35	1.42		0.09	--	--		
Race Interactions with High Parental Education												
Black	0.23	1.26		0.41	0.50	1.65	*	0.41	-0.35	0.70	*	0.17
Other Race	-0.36	0.70		0.23	-0.07	0.93		0.23	-0.34	0.71	**	0.11
White (ref)	--	--			--	--			--	--		
Race Interactions with Low Parental Education												
Black	0.03	1.03		0.19	0.11	1.12		0.19	-0.26	0.77		0.18
Other Race	0.35	1.42	**	0.12	0.17	1.19		0.12	0.06	1.06		0.11
White (ref)	--	--			--	--			--	--		
-2 Log Likelihood	7726.18				11373				9548.4			

ACADEMIC ORIENTATION

ACAdemic Achievement

Logistic Regression Predicting Having Participated in Sports through the 12th Grade

Legistic Regression Predicting	HSB	$\text { 3: } 1982$	($\mathrm{n}=1$	152)		$\mathrm{S}: 1992$	($\mathrm{n}=$	$3,510)$: 2004	($\mathrm{n}=1$,360)
		$\begin{aligned} & \hline \hline \text { Boys (n } \\ & \text { Mode } \end{aligned}$				Boys (n Mode	$\begin{aligned} & =908 \\ & 11 \end{aligned}$			$\begin{aligned} & \hline \hline \text { Boys (n } \\ & \text { Mode } \end{aligned}$	$\begin{aligned} & \hline=764 \\ & \text { el } 1 \end{aligned}$	
		$\mathrm{n}=52$				$\mathrm{n}=74$				$\mathrm{n}=70$		
	B	Exp(B)	Sig	SE	B	Exp(B)	Sig	SE	B	Exp(B)	Sig	SE
Intercept	-0.54		**	0.18	-0.92		***	0.18	-0.17		+	0.18
Race Black	0.55	1.73		0.56	1.31	3.71	**	0.56	0.87	2.39	***	0.56
Other Race	-0.22	0.80		0.19	-0.01	0.99		0.19	0.15	1.16		0.19
White (ref)	--	--			--	--			--	--		
Grades So Far in HS Rough GPA estimate but HSB is 'grades so far in HS;' NELS are general grades only for math, english, history and science; and ELS is GPA for	0.41	1.51	***	0.05	0.50	1.65	***	0.05	0.31	1.36	***	0.05
academic courses in 9th and 10th grade Imputation flag	-0.64	0.53	+	0.34	-0.30	0.74	+	0.34	-0.60	0.55	***	0.34
Remedial English $0=$ No, $1=\mathrm{Yes}$	0.14	1.15		0.09	0.01	1.01		0.09	0.34	1.40	+	0.09
Imputation flag	0.03	1.03		0.32	0.60	1.82		0.32	-0.14	0.87		0.32
$\begin{array}{r} \text { Remedial Math } \\ 0=\text { No, } 1=\mathrm{Yes} \end{array}$	-0.19	0.83	*	0.09	-0.44	0.64	***	0.09	0.03	1.03		0.09
Imputation flag	-0.11	0.90		0.31	-0.35	0.70		0.31	0.23	1.26		0.31
Sophomore Reading Standardized Score Continuous	-0.00	1.00		0.00	0.00	1.00		0.00	-0.00	1.00		0.00
Imputation flag Race Interactions with Grades	-0.35	0.70	***	0.10	-0.50	0.61	***	0.10	--	--		
Black	-0.28	0.76	*	0.13	-0.44	0.64	***	0.13	-0.34	0.71	**	0.13
Other Race	-0.09	0.91		0.10	0.01	1.01		0.10	-0.12	0.89	*	0.10
White (ref)	--	--			--	--			--	--		
Race Interactions with Remedial English												
Black	-0.12	0.89		0.26	0.01	1.01		0.26	0.14	1.15		0.26
Other Race	-0.33	0.72	+	0.19	-0.17	0.84		0.19	0.45	1.57		0.19
White (ref)	--	--			--	--			--	--		
Race Interactions with Remedial Math												
Black	0.15	1.16		0.25	-0.03	0.97		0.25	0.28	1.32		0.25
Other Race	0.50	1.65	**	0.19	0.46	1.58	*	0.19	-0.46	0.63	+	0.19
White (ref)	--	--			--	--			--	--		
Race Interactions with Reading Score												
Black	0.01	1.01		0.01	-0.00	1.00		0.01	0.01	1.01		0.01
Other Race	0.01	1.01	+	0.01	-0.00	1.00		0.01	0.01	1.01	+	0.01
White (ref)	--	--			--	--			--	--		
-2 Log Likelihood	7641.7				11160.				9492.2			

Bibliography

Adelman, Clifford. 2006. "The Toolbox Revisited - Paths to Degree Completion From High School Through College." Washington, D.C.: U.S. Department of Education.
Barber, Bonnie L., Jacquelynne S. Eccles and Margaret R. Stone. 2001. "Whatever Happened to the Jock, the Brain, and the Princess?: Young Adult Pathways Linked to Adolescent Activity Involvement and Social Identity." Journal of Adolescent Research 16(5): 429-455.
Bianchi, Suzanne, Philip N. Cohen, Sara Raley and Kei Nomaguchi. 2004. "Inequality in Parental Investment in Child-Rearing: Expenditures, Time, and Health." Chapter 5 in Social Inequality, edited by Kathryn M. Neckerman. Russell Sage Foundation.
Braddock II, Jomills Henry. 1981. "Race, Athletics, and Educational Attainment -Dispelling the Myths." Youth \& Society 12(3): 335-350.
Buchmann, Claudia and Thomas A. DiPrete. 2006. "The Growing Female Advantage in College Completion: The Role of Family Background and Family Achievement." American Sociological Review 71: 515-541.
Coleman, James S. 1961. "The Adolescent Culture." Chapter 2 in The Adolescent Society: The Social Life of the Teenager and Its Impact on Education. New York, NY: Free Press of Glencoe.
Duquin, Mary E. 1990. Review Essay of Anthology: "Sport, Men, and the Gender Order: Critical Feminist Perspectives," edited by Michael Messner and Don Sabo. Journal of the Philosophy of Sport XIX: 95-99.
Eder, Donna and Stephen Parker. 1987. "The Cultural Production and Reproduction of Gender: The Effect of Extracurricular Activities on Peer-Group Culture." Sociology of Education 60: 200-213.
Entwisle, Doris R., Karl L. Alexander, Linda S. Olson. 2007. "Early Schooling: The Handicap of Being Poor and Male." Sociology of Education 80:114-138.
Ferguson, Ann Arnett. 2001. "naughty by nature." Chapter 4 in Bad Boys: Public Schools in the Making of Black Masculinity (Law, Meaning, and Violence). Ann Arbor: University of Michigan Press.
Gibeaut, John. 1997. "Shooting for Parity on the Playing Fields." ABA Journal 40-41.
Griffith, Vive. 2007. "Redefine the Finish Line." The University of Texas at Austin 2007 Feature Story Archive. www.utexas.edu/features/2007/athletics/index.html.
Guest, Andrew and Barbara Schneider. 2003. "Adolescents' Extracurricular Participation in Context: The Mediating Effects of Schools, Communities, and Identity." Sociology of Education 76(2): 89-109.
Haveman, Robert, Gary Sandefur, Barbara Wolfe, and Andrea Voyer. 2004. "Trends in Children's Attainment and Their Determinants as Family Income Inequality Has Increased." Chapter 4 in Social Inequality, edited by Kathryn M. Neckerman. New York: Russell Sage Foundation.

Hoffman, John P. 2006. "Extracurricular Activities, Athletic Participation, and Adolescent Alcohol Use: Gender-Differentiated and School-Contextual Effects." Journal of Health and Social Behavior 47: 275-290.
Iceland, John. 2006. Poverty in America: A Handbook. University of California Press.
Kane, Thomas J. 2004. "College-Going and Inequality." Chapter 8 in Social Inequality, edited by Kathryn M. Neckerman. Russell Sage Foundation.
Lee, Jihyun, Wendy S. Grigg and Gloria S. Dion. 2007. The Nation's Report Card: Mathematics 2007 (NCES 2007-494). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education, Washington, D.C.
Leonard, Wilbert M. II. 1996. "The Odds of Transiting From One Level of Sports Participation to Another." Sociology of Sport Journal 13: 288-299.
Liebow, Elliot. 1967. Tally's Corner: A Study of Negro Streetcorner Men. Little Brown and Company.
Long, James E. and Steven B. Caudill. 1991. "The Impact of Participation in Intercollegiate Athletics on Income and Graduation." The Review of Economics and Statistics 73(3): 525-531.
Massey, Douglas S., Camille Z. Charles, Garvey F. Lundy, and Mary J. Fischer. 2002. The Source of the River: The Social Origins of Freshmen at America's Selective Colleges and Universities. Princeton University Press.
McNeal, Ralph B., Jr. 1999. "Participation in High School Extracurricular Activities: Investigating School Effects." Social Science Quarterly 80(2): 291-309.
Melnick, M.J. and Sabo, D.F. 1992. "Educational Effects of Interscholastic Athletic Participation on African-American and Hispanic Youth." Adolescence 27(106): 295-308.
Miller, Kathleen E., Donald F. Sabo, Michael P. Farrell, Grace M. Barnes and Merrill J. Melnick. 1998. "Athletic Participation and Sexual Behavior in Adolescents: The Different Worlds of Boys and Girls." Journal of Health and Social Behavior 39: 108-123.
National School Boards Association. 2006. "The ideal high school graduate." American School Board Journal June 2006.
Perle, M. and R. Moran. 2005. NAEP 2004 Trends in Academic Progress: Three Decades of Student Performance [NCES 2005-464]. U.S. Department of Education, National Center for Education Statistics, Washington, DC: U.S. Government Printing Office.
Phillips, Meredith and Tiffani Chin. 2004. "School Inequality: What Do We Know?" Chapter 12 in Social Inequality, edited by Kathryn M. Neckerman. Russell Sage Foundation.
Riess, Steven A. 1980. "Sport and the American Dream: A Review Essay." Journal of Social History 14(2): 295-303.
Riess. Steven A. 1995. "Sport and the American Jew: A Second Look." American Jewish History 83(1): 1.
Rosenbaum, Paul R. and Donald B. Rubin. 1983. "The Central Role of the Propensity Score in Observational Studies for Causal Effects." Biometrika 70(1): 41-55.

Sabo, Donald, Merrill J. Melnick, and Beth E. Vanfossen. 1993. "High School Athletic Participation and Postsecondary Educational and Occupational Mobility: A Focus on Race and Gender." Sociology of Sport Journal 10:44-56.
Snyder, Eldon E. and Elmer Spreitzer. 1990. "High School Athletic Participation as Related to College Attendance Among Black, Hispanic, and White Males: 'A Research Note."' Youth and Society 21(3): 390-398.
Spady, William G. 1970. "Lament for the Letterman: Effects of Peer Status and Extracurricular Activites on Goals and Achievement." The American Journal of Sociology -- Part 2: Status and Achievement in the U.S.: 1969 75(4): 680-702.
Videon, Tami M. 2002. "Who Plays and Who Benefits: Gender, Interscholastic Athletics, and Academic Outcomes." Sociological Perspectives 45(4): 415-444.
Western, Bruce, Meredith Kleykamp, and Jake Rosenfeld. 2004. "Crime, Punishment and American Inequality." Chapter 20 in Social Inequality, edited by Kathryn Neckerman. Russell Sage Foundation.
Wright, Paul M., Sheng Ding, and Weidong Li. 2005. "Relations of Perceived Physical Self-Efficacy and Motivational Responses Toward Physical Activity By Urban High School Students." Perceptual and Motor Skills 101: 651-656.

[^0]: ${ }^{1}$ An NCES contact indicated that the data file used to link the transcript data file IDs with the student survey data file IDs is missing

