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Abstract 

The fetal origins hypothesis suggests that events during development can affect health and 

mortality later in life.  Malnutrition and disease are thought to be important such events but are 

hard to tease apart using population-level data because they often co-occur.  However, the 1918-

1919 Spanish flu pandemic provides an excellent opportunity to test the effects of disease in the 

absence of major malnutrition relative to surrounding years.  We used publicly available data 

from the Human Mortality Database for 24 countries to test the hypotheses that prenatal or 

neonatal exposure to severe influenza would either increase or decrease mortality rates at ages 

45-80.  We also used fertility statistics and half-year cohorts to test for finer-scale effects in 

France, Italy, and Switzerland.  Across the 24 countries, after controlling for age, period, and sex 

effects, residual mortality rates did not differ systematically for the cohorts born in 1918 or 1919 

relative to cohorts born in surrounding years.  We calculate at most a 20-day reduction in life 

expectancy for those born in flu cohorts; likely values are much smaller.  Similarly, there was no 

notable difference in 1918-1919 half-year cohort mortality in France or Italy, though it is 

possible there was a difference in Switzerland.  Estimates of influenza incidence during the 

pandemic suggest that exposure was high enough for this to be a robust negative result.  

Potentially, early exposure to influenza specifically or disease generally has little effect on late-

life health and mortality; alternatively, there could be countervailing effects of exposure that 

cancel each other out in population-aggregate measures.  Lastly, we detected substantial 

heterogeneity in late-life mortality rates in different cohorts within countries, though not across 

countries or cohorts generally, suggesting that local conditions early in life may be important for 

late-life mortality in ways yet to be elucidated. 

 

Introduction 

It has long been hypothesized that events early in life could affect the developmental process and 

thereby health at later ages.  Such effects are well-known in animal models, and have been 

observed in humans for a number of specific diseases [1-3].  Finch and Crimmins [4] showed an 

association between early and late mortality in cohorts from Sweden, and suggest that this could 

imply an effect on lifespan of high inflammation resulting from infections early in life.  However, 

links between early and late life mortality could also result from famine or other factors not 

directly related to early inflammation; data on the effects of famine are mixed [5-7].  Generally 

speaking, disease and malnutrition tend to co-occur, making it hard to tease apart these factors 

with population data. 

One potential way to distinguish effects of disease from malnutrition is to use the Spanish 

influenza pandemic of 1918-1919.  Although following close on the heels of World War I and 

the potential food shortage accompanying war, the pandemic affected neutral countries as well 

and did not occur at a time of generalized food shortages more severe than what had occurred in 



the previous years of the war.  Thus, any significant differences in late-life mortality of 1918 and 

1919 cohorts relative to surrounding cohorts is likely attributable to the pandemic, especially if 

such effects can be generalized across countries.  Mortality from the pandemic is estimated at 50-

100 million worldwide, the largest well-recorded demographic event on record [8]; while the 

damage was somewhat less in developed countries, no country was immune and effects were 

severe even in Denmark, the country with lowest excess mortality [9]. 

The simple prediction, following Crimmins and Finch [10], is that exposure to disease in 

utero or early in life should increase late-life mortality (i.e., reduce adult life expectancy).  There 

are a number of mechanisms that could cause such an effect in addition to an increase in 

inflammation.  In particular, pre- or peri-natal exposure to disease could have effects via changes 

in health of the mother, who might allocate scarce resources to maintaining her own health rather 

than ensuring proper development of the fetus.  Developmental processes are sensitive to 

perturbation and can have diverse, long-lasting downstream effects.  For example, a slight 

problem in neural development might result in marginally lower intelligence, which could in turn 

result in lower social status and all its concomitant health problems.  Additionally, developing 

organisms often look to their environment for cues as to how to develop best in an unstable 

world [“phenotypic plasticity,” 11]; early exposure to disease could prompt the immune system 

to develop in expectation of high disease burden throughout life, potentially resulting in high 

constitutive inflammation levels.  There may be other pathways as well by which early exposure 

to disease could affect late-life mortality. 

If early exposure to influenza increases mortality via inflammation pathways, we can make 

several predictions.  To start with, the effect should be strongest in those hit by the flu post-

natally, when there is less reliance on the maternal immune system [12].  In contrast, other 

pathways should be strongest for pre-natal exposure, since disturbance earlier in development is 

likely to have more severe long-term consequences in most cases.  Because the timing of the flu 

pandemic was precise and roughly synchronized worldwide, with most mortality occurring in 

fall 1918 followed by a smaller wave in early 1919 [8], we should expect 1918 cohort mortality 

(i.e., mostly those already born before the flu hit) to be higher than 1919 cohort mortality (mostly 

those still in utero during exposure) if inflammation is the primary pathway of action; conversely, 

if more general developmental disturbance through under-allocation of maternal resources is the 

primary pathway, the 1919 cohort should have higher late-life mortality.  Also, we would expect 

a slightly delayed cohort effect in Australia, which managed to delay onset of the flu to early 

1919 by a maritime quarantine [8]. 

Potentially confounding these predictions, there are also pathways by which early exposure 

to disease could actually lower late-life mortality.  First, high exposure to disease could cull the 

weakest infants from a cohort; the survivors should be the most robust individuals and therefore 

predisposed to live longer.  Such selection effects have been documented in wild animals such as 

Leach’s Storm-Petrel (Oceanodroma leucorhoa) [13].  Second, early exposure to disease could 

actually improve the long-term health of infants.  Hunter-gatherers are likely exposed to much 

higher disease burdens than modern humans and are known to have constitutively high 

inflammation levels [14].  If this is representative of the environment in which our immune 

systems evolved, it may well be that proper development of the immune system requires 

exposure to pathogens for some “priming” effect.  Along these lines, there are hypotheses that 

modern epidemics of allergies and asthma result from early under-exposure of the immune 

system [12, 15]; it might be reasonable to expect similar such effects in other aspects of the 

immune system late in life, including auto-immune disease and regulation of inflammation. 



All of the above mechanisms for effects of early exposure to disease on late-life mortality 

could operate simultaneously.  To the extent that countervailing processes have similar degrees 

of effect, our ability to detect differences with population-level data will be minimal and detailed 

physiological data will be necessary to determine pathways of action.  Nonetheless, it is possible 

that some of these effects are much stronger than others, and if there are population-level effects, 

it is unlikely that a better natural experiment will be found than the 1918-1919 flu pandemic.  

Analyses of economic and health outcomes were poorer for cohorts born in the U.S. during the 

flu, but mortality has not been examined [16, 17]. 

Here, we take publicly available data from the online Human Mortality Database to test for 

differences in late-life mortality between Spanish flu cohorts and surrounding cohorts.  We 

restrict analyses to ages 45 to about 80, depending on country, and to cohorts born between 1911 

and 1923.  To ensure that all ages tested are included for all cohorts, we limit countries analyzed 

to those with mortality data dating back to 1956 (= 1911 + 45), a set of 24 countries including 

most of Europe (but not the Soviet bloc), the U.S., Canada, Australia, Japan, and New Zealand.  

We use residual mortality rates after accounting for age, period, and sex effects; age and period 

splines are used to account for non-linear trends.  Life expectancy is also analyzed.  Finer-scale 

cohort analyses are performed for France, Italy, and Switzerland.  We show that in most analyses 

there is no significant difference between 1918 or 1919 cohort mortality and surrounding cohort 

mortality in either direction. 

 

Methods 

Data 

We used publicly available data for 24 countries taken from the Human Mortality Database 

(www.mortality.org; Table 1).  We used cohort data on deaths and exposures to calculate 

mortality rates for each cohort at each age (deaths/exposures).  We used all countries in the 

database as of January 2008 that met our criteria for age and year ranges except Iceland and 

Luxembourg, for which population size was too small to make reliable inferences.  There were 

several trade-offs to consider in selecting which cohorts and ages to use, as follows.  First, the 

later the last cohort used in our comparison, the younger the oldest age we could use.  We used 

cohorts born through 1923.  Most countries had data available through 2003-2005, so we could 

use a maximum age of 79-82 (depending on country).  Second, the younger the youngest age 

used and the earlier the first cohort used, the fewer countries could be included in the analysis 

based on how far back their mortality statistics date.  Additionally, greater range of ages and 

cohorts increases the “sample size” of mortality rates available for analysis and thus improves 

statistical power.  Ideally, we would have liked to use mortality starting at age 30 for cohorts 

born in 1910 or later; of the 33 available countries, 16 had old enough data regardless of first age 

and cohort used, and two (Slovenia and Taiwan) clearly did not have good coverage at the 

youngest ages.  However, 15 countries had mortality data starting between 1947-1959, which 

would limit the youngest age and/or earliest cohort used.  We ran the analyses with different 

combinations for all countries and found consistent results; here, we present data using cohorts 

from 1911 (to include some pre-World War I data) starting at age 45.  This results in exclusion 

of Poland and the former Soviet republics; we were not confident in the quality of the Soviet 

republic data, but there were no clear patterns in these excluded countries that contradict our 

broader findings.  Thus, we used a cohort range of 1911-1923, an age range of 45-~81 

(depending on last year of data available for each country), and a set of 24 countries (Table 1).  

Roughly 22,000 mortality data points were incorporated into the analyses. 



The Human Mortality Database provides only annual data, but the Spanish flu pandemic was 

worst from the fall of 1918 through spring of 1919, suggesting that one-year cohorts might not 

be sufficiently specific to pick up cohort effects, especially if age of the infant or stage of 

pregnancy during influenza exposure are important factors in determining late-life effects.  In 

order to address this, we used monthly fertility data for France (1914-1919), Italy (1911-1923), 

and Switzerland (1910-1923) combined with Lexis data from the Human Mortality Database for 

these countries to test for effects at half-year cohort time scales (see Analysis) [18-20].  The 

monthly fertility data for Italy were pooled for the years 1911-1913 and 1921-1923; we ran 

analyses with and without these years included, but found no substantive differences and present 

the only the analysis with all years included. 

 

Analyses 

24-country multilevel models 

Mortality rates (deaths per exposure per year) were log-transformed so that the increase with 

age was roughly linear.  Henceforth we refer to log-mortality rates simply as “mortality rates.”  

We used regression (general linear models) to calculate residual log-mortality after accounting 

for age, period, and sex.  Year of death (period) was calculated as year of birth plus age at death 

plus one, which is the average time of death assuming constant fertility rates within each year of 

birth and constant death rates within each one-year age class. We centered age and period and 

then calculated polynomial B-spline bases with knots every 10 years (R v. 2.6.0, “splines” 

package, “bs” function).  Regression models calculated mortality as a function of age splines, 

period splines, sex, and all two-way interactions among them.  This model should represent a 

significant improvement over typical age-period-cohort models [e.g. 21, 22] because (a) it allows 

for interaction terms, which often turn out to be highly significant; (b) there are far fewer spline 

terms and interactions than data points, so it is easily identified and retains substantial power; (c) 

it accounts for continuity (i.e., non-independence) of adjacent age-classes and periods; and (d) it 

does not make any of the assumptions of parametric models.  Depending on country, variance 

explained by this model ranged from 99.51% to 99.95%.  Residuals from this model (“residual 

mortality”) were used in subsequent analyses, and represent mortality after accounting for age, 

period, and sex effects.  Residual mortality rates were calculated separately for each country 

using R v. 2.6.0 [23]. 

We tested for heterogeneity in residual mortality rates across 24 countries and 13 birth 

cohorts (1911-1923) using multilevel random effects models.  The model used was a “crossed” 

model; i.e., each mortality rate was nested within a cohort and within a country, but neither 

cohorts were nested within countries nor countries within cohorts.  The specified model was: 

 mr(ijk) = β0 + β1(k) + β2(j) + ε(ijk)  (1) 

where mr is residual morality, i is individual mortality data point (for a given age, cohort, sex, 

and country), j is country, k is cohort, β0 is overall mean residual mortality (expected to be 

approximately 0), β1s are normally distributed cohort-specific deviations from β0, β2s are 

normally distributed country-specific deviations, and ε is a normally distributed error term.  

Variances of β1, β2, and ε were also estimated and assumed to be gamma-distributed.  In order to 

calculate deviations of specific combinations of country and cohort from the overall average, we 

used a country-within-cohort model, similar to equation (1) except with the β2s nested within the 

β1s: 

 mr(ijk) = β0 + β1(k) + β2(jk) + ε(ijk)  (2) 



Shrunk estimated Bayes values were calculated for each country and cohort (from the crossed 

model, equation (1)) and for cohort-country combination (from equation (2)).  Multilevel models 

were fit using Bayesian Gibbs sampling and Markov Chain-Monte Carlo simulations (4000 

iterations, first 1000 discarded to allow for convergence) in WinBUGS v. 1.4.3 [24]. 

 

Life expectancy 

In order to examine male-female differences and also to get a summary metric in relevant 

units (“years” as opposed to “residual log-mortality”), we repeated the analyses using cohort life 

expectancy from ages 45-79, calculated for each country-cohort combination from the mortality 

rates used above via standard methods.  This quantity shows how many years the average person 

surviving to age 45 would expect to live through age 79.  Because period trends in life 

expectancy result in roughly linear increases across the 1911-1923 cohorts, we calculated 

residual life expectancy for each cohort within each country – i.e., given the increase in life 

expectancy over time in a given country, how much longer or shorter did each cohort live than 

expected?  We then averaged these values across countries to calculate mean residual life 

expectancy for each cohort.  Analyses were run separately for males and females. 

 

France, Italy, and Switzerland: finer-scale cohorts 

We took a somewhat different approach to analyzing the finer-scale data from France, Italy, 

and Switzerland.  Because we used Lexis data rather than cohort data, we were able to calculate 

two mortality rates for each age-cohort-sex-country combination: one for people who died in the 

earlier possible year, and one for people who died in the later possible year.  For example, a 

woman who was born in 1918 and died at age 60 could have died in 1978 or 1979, depending on 

when in 1918 she was born and exact age at death.  The Lexis data allows us to separate those 

who died in 1978 from those who died in 1979.  The probability of dying in 1978 versus 1979 

depends on when in 1918 the woman was born: the closer to the beginning of 1918, the higher 

the probability she would die in 1978 (given death at age 60).  This relationship can be used to 

calculate distributions of birthdays for those who died in the earlier versus later possible years.  

Assuming equal birth rates throughout a year and equal death rates throughout a one-year age 

class, those dying in the earlier possible year have a mean birthday May 1, with 75% born in the 

first half of the year.  Those dying in the later possible year have a mean birthday September 1, 

with 75% born in the second half.  Thus any large differences in mortality rates between half-

year cohorts should be apparent (though not precisely estimable) in differences between these 

“Lexis cohorts” – those that died in the earlier versus later possible year, for a given one-year age 

class and one-year birth cohort.  If age is a and year of birth is c, the two Lexis cohorts are thus 

those who died in year a + c and those who died in year a + c + 1.  We will refer to these cohorts 

as “spring births” and “fall births” respectively, though of course there are individuals in each 

cohort born at all times of year; the seasons are probabilistic averages.  The method is developed 

at greater length in Online Appendix A. 

Death counts but not death rates or population exposures are available in Lexis format from 

the Human Mortality Database, so calculation of Lexis cohort death rates is only possible if we 

divide full-year cohort exposure data in half, assuming equal sizes of the Lexis cohorts (i.e., 

constant birth rates throughout the year).  However, there was a baby boom at the end of 1919 in 

many countries in our database, apparently a consequence of the flu [25]; the resulting difference 

in the cohort sizes confounds our ability to calculate accurate Lexis cohort mortality rates for that 

year, one of the two of most interest for the flu pandemic.  We circumvented this by gathering 



monthly fertility rates for France, Italy, and Switzerland, allowing us to calculate much more 

precisely the percent of full year exposures that should be assigned to each of the two Lexis 

cohorts within a given year.  For example, those born in January are born on average around 

January 15, or 1/24
th
 of the way through the year.  Thus, only 1/24 of their lives are spent 

exposed to risk in year a + c + 1, and 23/24
ths
 are spent in year a + c.  Similarly, for February the 

proportions are 3/24
ths
 and 21/24

ths
, etc.  The baseline sizes of the spring and fall cohorts can 

each be calculated as the sum across months of the product of births in that month and the 

proportion of life lived in year a + c or year a + c + 1, as appropriate for that month and cohort.  

Full-year exposures can then be allocated to the Lexis cohorts not by dividing in half, but by 

multiplying by the percentage of births that were allocated to each respective Lexis cohort.  This 

method does not account for immigration or emigration, and assumes that differences in death 

rates between the Lexis cohorts do not affect cohort sizes; nonetheless, it should yield a 

reasonable approximation of the exposures for each Lexis cohort, allowing calculation of Lexis-

cohort-specific death rates (deaths/exposures). 

Because the years for which monthly fertility data were available differed between France, 

Italy, and Switzerland, we ran the countries separately rather than including country as a level in 

a multilevel model.  For each, we generated functions predicting mortality as a function of age 

and period using splines as outlined above.  However, fertility data by month were not sex-

specific, so we used total death rates and exposures and do not include a sex term in the model.  

We then used these functions to generate predicted mortality for each age and year of death; 

residuals were calculated as the difference between observed and predicted values.  We then 

modeled these residuals as a function of spring versus fall birth (i.e. Lexis cohort) and calculated 

final residual values.  Analyses up to this point were conducted in R; we then imported the 

residuals into WinBUGS, modeling the heterogeneity of residual mortality across cohorts as 

above but separately for each country (i.e., equation (1) with no β2 terms). 

 

Sensitivity Analyses 

We ran multiple sensitivity analyses.  In most cases, we found no substantial difference from 

the primary analysis.  We present a selection of these results in the Online Appendix B.  The one 

analysis that showed an important difference was excluding three of the Commonwealth 

countries (England and Wales, New Zealand, and Canada) that had apparently aberrant data for 

1919 and 1920 (see Results).  We present the multilevel and life expectancy analyses with and 

without those countries.  Additional sensitivity analyses include: (a) varying initial parameters in 

the multilevel models; (b) using different age ranges (45-70 and 60-80) to check for more age-

specific effects; (c) pooling the countries before running the age-period-sex model so that more 

country variation was preserved in the multilevel model; and (d) using cohort-within-country 

(equation (3)) and country-within-cohort (equation (2)) models instead of the crossed model 

(equation(1)). 

 mr(ikj) = β0 + β1(j) + β2(kj) + ε(ikj) (3) 

Lastly, we worried that flu cohorts, who would have been young adults during World War II, 

might have suffered a specific mortality pattern then that could bias our results; for example, if 

World War II mortality were normally distributed across cohorts with a peak for the 1919 cohort, 

there could have been culling of the most healthy individuals (i.e., those fit for battle) in a way 

that would affect our estimates.  We addressed this concern by running the multilevel model 

including only females and by using subsets of countries with low (<0.5%) or very low (<0.1%) 

mortality during the war (as a percent of 1939 population, as specified on Wikipedia 



http://en.wikipedia.org/wiki/World_War_II_casualties).  Again, there were no substantive 

differences and results are presented in Online Appendix B. 

 

Results 

Twenty-four-country mortality analysis 

There was little evidence for differences in mortality rates among cohorts (Figure 1a; β1s 

from equation (1)), though it is possible that mortality was slightly higher in the 1918 and 1920 

cohorts but lower in the 1922 cohort.  However, there appears to be substantial heterogeneity 

across countries within cohorts: out of 312 countries within cohorts, 42 had 95% credible 

intervals that did not include zero (22 above, 20 below, Figure 2; β2s from equation (2)).  False 

discovery rates are not generally a concern with Bayesian sampling methods.  

Figure 2 also shows that the three lowest mortality rates are for the 1919 cohorts of England 

and Wales, New Zealand, and Canada; the same three countries have some of the highest 

mortality rates in the following year, 1920.  We believe these results are likely a data artifact.  

There is no reason to suspect that 1920 mortality should be particularly high for these three 

countries, which, being members of the Commonwealth, would share more in terms of record-

keeping than in terms of demography.  If there were misallocation of births from 1920 to 1919 

(either in the original records or based on smoothing done in the Human Mortality Database), 

1919 and 1920 mortality rates would appear symmetrically low and high respectively, as we 

observe.  We cannot definitively determine if this is an artifact; nonetheless, we felt it prudent to 

run the analysis excluding these countries.  When we do, the 1919 residual mortality rates 

increase and the 1920 rates decrease, as expected (Figure 1b).  Neither 1918 nor 1919 rates differ 

markedly from zero, and neither are as high as 1922 rates are low.  Nonetheless, there does 

appear to be a weak trend for high mortality in the 1918-1919 cohorts, a pattern not seen when 

all 24 countries are included. 

Lastly, we tested whether the 1918 and 1919 cohort-specific residual mortality rates within 

each country (subset of β2s from the model in equation (3)) correlated with severity of the 

pandemic in each country as measured by excess flu mortality [cite Murray et al.].  The 

correlation was not significant in either year (1918: r=-0.29, p=0.23; 1919: r=0.27, p=0.26), so 

there does not appear to be an association with severity of the pandemic by country and late-life 

mortality rates. 

 

Life expectancy 

Life expectancy analyses confirmed the results of the mortality analysis (Figure 3).  There 

were marginal negative effects of being born in 1918 or 1919 only when England and Wales, 

New Zealand, and Canada were excluded from the analyses (Figure 3b).  Males and females 

showed similar patterns (Pearson’s r=0.83).  The largest effect observed was for females born in 

1919 excluding the three Commonwealth countries, about 19 days less life expectancy.  If we 

extrapolate that roughly half of babies born in 1919 were in utero for substantial periods when 

the pandemic was raging, that roughly one-third of these were actually exposed to the flu, and 

that all of the 1919 effect is to the pandemic, we can calculate that life expectancy is lowered 114 

days by exposure to the flu in utero.  However, this is a maximum estimate: it is not clear that the 

low life expectancy of the 1919 cohort is any different than might be expected based on random 

yearly variation (as opposed to the flu) nor that we should exclude the Commonwealth countries, 

and even if the effect is real the estimate for males is only about half as large. 

 



France, Italy, and Switzerland with half-year Lexis cohorts 

Using the Lexis cohorts described above and the appropriate adjustments for fertility 

throughout birth year, we were able to test for differences in mortality across half-year cohorts, 

potentially detecting effects of the influenza pandemic on late-life mortality that are not apparent 

at a one-year time scale.  As in the above analysis, some cohorts in some countries had mortality 

that differed significantly from the overall average for that country (Figure 4).  Across the three 

countries, there is no consistent trend for high or low mortality in the three cohorts of primary 

interest (second half of 1918, both halves of 1919).  In France (Fig. 4a) all of these three cohorts 

have 95% credible intervals spanning zero, and in Italy (Fig. 4b) the first half of 1919 appears to 

have low mortality but is well within the range of variation seen across other cohorts.  In 

Switzerland (Fig. 4c), the second half of 1918 and first half of 1919 have high mortality and the 

second half of 1919 has low mortality, with the latter two cohorts having the largest mean 

differences from the overall average of any cohorts in any of the three countries.  However, the 

magnitude of the deviance is similar for both, and we cannot exclude the possibility that the 

apparent effect is due to some estimation problem of the proper cohort sizes for that year.  A 

similar issue could account for the symmetrically high and low mortality rates of the two 1921 

cohorts in Italy. 

 

Discussion 

We failed to detect any consistent effect of the 1918-1919 influenza pandemic on late-life 

mortality for cohorts exposed to the pandemic early in life.  Because so much of the population 

was exposed to the flu that year – roughly 25% in the US and 45% in Norway, for example [25, 

26] – any major effect on late-life mortality should have been apparent from the population-level 

data we used.  Moreover, the flu struck young adults, neonates, and the elderly most heavily [27], 

implying that incidence was higher still among the fetuses (via pregnant women) and neonates 

that were of primary interest in this study.  We made varying predictions that would have been 

supported by positive or negative effects, differential effects on neonates and those in utero 

during the pandemic, or some effect on all cohorts born before the pandemic, with strongest 

effects in the children youngest in 1918-1919.  None of these patterns were apparent in our data. 

There was potential evidence of an effect of the pandemic on late-life mortality when we 

excluded three Commonwealth countries with apparently spurious data – England and Wales, 

New Zealand, and Canada – from the analysis.  (More detail on why we distrust the data from 

these countries is available in Online Appendix C.)  The trend was still not significant at α=0.05 

and the effect was small (less than 20 days lost life expectancy for females born in 1919), but we 

cannot exclude the possibility of a weak effect.  There was also high mortality in Switzerland for 

those born in the second half of 1918 and first half of 1919, but low mortality for those born in 

the second half of 1919.  This would be consistent with negative effects on the long-term health 

of neonates but a selection effect on those early in utero during the pandemic.  However, the 

symmetry of the 1919 effects suggests they could also be attributable to the same error in 

estimating the relative sizes of those cohorts that we believe biased the estimates in the three 

Commonwealth countries.  Similar effects were not apparent in France or Italy, so it would be 

premature to draw any strong conclusions from the Swiss data.  Moreover, the Swiss data does 

not confirm the Commonwealth-excluded analysis because the effects for the two halves of 1919 

cancel each other out: none of the three countries we examined with Lexis cohorts bolsters the 

case for a weak overall 1919 effect. 



There are a number of reasons we might have failed to detect major effects of the flu 

pandemic on late-life mortality.  Most obviously, inflammation early in life may not 

systematically affect late-life mortality.  Our results are certainly not sufficient to conclude this, 

but they at least raise the possibility that lifelong inflammation patterns are not set by 

developmental events.  Second, there might be an effect of early inflammation on late-life 

mortality that is too weak to detect.  A several-week bout of acute illness may not be sufficient to 

induce detectable changes in lifelong inflammation levels even if those levels are affected by 

peri-natal levels.  If this is the case, it is unlikely that any specific childhood disease would yield 

major inflammation sequellae that would last through adulthood, but it is possible that 

environmental factors that affect general propensity to disease could have such an effect.  Lastly, 

it is possible that there are both positive and negative effects on health that cancel each other out 

in the net population statistics.  As noted above, negative effects could arise due to allocation of 

resources that negatively affect development or due to high inflammation levels; positive effects 

could arise from selection or from priming of the immune system.  At a disease-specific level, it 

could be that any increases in mortality due to heart disease are balanced by, say, decreases in 

cancer rates that might result from better functioning of the immune system against cancers.  

While it is not possible to say which of these explanations accounts for the lack of association we 

document here, it is clear that simplistic hypotheses about early exposure to disease having large 

effects on late-life mortality are not supported by this analysis.  

Our results stand in contrast to several studies showing long-term effects of the flu.  

Azambuja [28] and Mamelund [29] showed potential negative health consequences for those 

who were adults or young adults when the pandemic hit.  However, the lack of clear age 

specificity of such proposed effects makes it hard to fully distinguish period and cohort effects, 

and the trends must remain suggestive rather than conclusive of the flu as a causal mechanism.  

In a careful analysis incorporating both quarter of birth and state, Almond [16] showed 

consistently poorer outcomes for the flu cohorts in the 1960, 1970, and 1980 censuses on 

economic measures including educational attainment, annual income, neighbors’ income, and 

disability status.  A similar analysis of health outcomes such as self-reported health, history of 

stroke or diabetes, and functional impairment also found some worse outcomes for flu cohorts, 

but in many cases the effects were not consistent among flu cohorts born in different quarters, 

even for relatively similar measures such as Trouble Lifting or Trouble Walking At All [17].  

Because worse economic and health outcomes should lead to higher mortality, it is somewhat 

surprising that we did not detect such effects in mortality.   

There are several potential explanations for the discrepancy between our results and these 

other studies.  First, many of the economic outcomes could be determined by factors earlier in 

life: educational attainment, for example, is almost certainly not caused by health later in life, 

since nearly all individuals in these cohorts would have reached their maximum level of 

education by their mid-twenties.  While it is conceivable that early health status could affect both 

educational attainment and late-life health, there is not a requisite causal link.  Second, if the 

causal pathway is Poor Early Health → Low Educational Attainment → Low Economic Status 

→ Poor Health → High Mortality or something similar, we should expect the effects to be 

diluted with each successive causal link (arrow), with the link to mortality being hardest to detect.  

Third, mortality is a composite of many processes, and it is quite possible that countervailing 

effects might average themselves out here (e.g. lower cancer rates but higher heart disease) in 

ways that are not predicted by the economic measures.  Fourth, it is possible there was a real 

effect in the U.S. but no effect in all the countries aggregated together.  In the U.S., mortality was 



significantly higher in the 1918 cohort (t=6.67, p<0.0001) and lower in the 1919 cohort (t=-3.65, 

p=0.0005) compared to all other cohorts.  There was no net effect pooling the two cohorts 

(t=1.08, p=0.28), but the 1918 effect was larger, potentially indicating a pattern in the U.S. that 

we missed by using one-year cohorts.  

Although it was not our goal to test more generally for cohort effects, our data show clear 

evidence of fine-scale differences among cohorts.  Within France, Italy, and Switzerland, many 

of the cohorts had mortality significantly above or below average.  Forty-two of 312 country-

cohort combinations also had mortality above or below the overall average.  While the 

differences among cohorts in the crossed model were not striking, the heterogeneity was 

significant.  Lastly, the strong correlation between cohort-specific male and female life 

expectancy suggests real trends rather than random deviations.  It is possible that the cohort 

effects are an artifact of imperfect control for age and period, but given that we detect them in 

multiple analyses and that our age-period-sex model explained more than 99% of the variation, 

we view this as unlikely.  Real cohort effects are not likely attributable to events later in life, 

since there are few events that would discretely affect one age-class but not another adjacent to it.  

The events that do have such discrete effects are almost always legal in nature and thus not 

generalizable across countries.  The cohort effects we detect are thus likely attributable to 

environmental factors very early in life.  It is paradoxical that we detected no specific effect of 

the flu, one of the most salient early-life environmental factors on record, but detected more 

general evidence for such effects operating at a very fine scale.  It is not clear what sorts of 

variation are causing these cohort effects. 

Finally, we believe that the Lexis cohort approach we developed here may be useful in other 

situations for distinguishing finer-scale cohorts than are initially apparent in the data.  For 

example, several studies have shown that fall babies have higher life expectancy than spring 

babies [the “Doblhammer effect,” 30, 31], but because linked date-of-birth and date-of-death 

data are hard to acquire, the effect has only been shown in several countries.  A Lexis cohort 

approach should be able to substantially increase the number of countries and time periods for 

which inferences can be made, allowing analysis of historical trends in the strength and 

distribution of this effect.  We are currently pursuing these analyses. 
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Table 1: Countries used for this analysis and their data ranges 

  Country Min age Max age Cohort range Earliest period data 

1 Australia 45 80 1911-1923 1921 

2 Austria 45 81 1911-1923 1947 

3 Bulgaria 45 81 1911-1923 1947 

4 Canada 45 80 1911-1923 1921 

5 Switzerland 45 82 1911-1923 1876 

6 Czech Republic 45 80 1911-1923 1950 

7 Denmark 45 82 1911-1923 1835 

8 England and Wales 45 79 1911-1923 1841 

9 Spain 45 81 1911-1923 1908 

10 Finland 45 82 1911-1923 1878 

11 France 45 81 1911-1923 1899 

12 West Germany 45 80 1911-1923 1956 

13 East Germany 45 80 1911-1923 1956 

14 Hungary 45 81 1911-1923 1950 

15 Italy 45 80 1911-1923 1872 

16 Japan 45 82 1911-1923 1947 

17 The Netherlands 45 82 1911-1923 1850 

18 Norway 45 82 1911-1923 1876 

19 New Zealand 45 79 1911-1923 1846 

20 Portugal 45 81 1911-1923 1940 

21 Slovakia 45 82 1911-1923 1950 

22 Sweden 45 82 1911-1923 1751 

23 Belgium 45 81 1911-1923 1841 

24 USA 45 80 1911-1923 1933 

Numbers are used in subsequent figures to identify countries.   
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Figure 1b 

 

Figure 1: Estimated Bayesian deviations of residual mortality rates with 50% credible intervals 

(boxes) and 1.5 times interquartile range (whiskers) for the cohorts 1911-1923 a) for all 24 

countries, and b) for 21 countries, excluding England and Wales, New Zealand, and Canada. 
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Figure 2: Estimated Bayesian deviations of residual mortality rates with 50% credible intervals 

(boxes) and 1.5 times interquartile range (whiskers) for the 42 country-cohort combinations 

whose 95% credible intervals do not span zero. The 270 country-cohorts that do not differ from 

zero are not shown here, but would fall in the center of the figure between Bulgaria 1913 and 

Canada 1917.  Estimates are from the country-within-cohort model (equation (2) in text), and 

show substantial heterogeneity. 
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Figure 3: Mean residual life expectancy (by cohort, averaged across countries) for a) all 24 

countries and b) 21 countries excluding England and Wales, New Zealand, and Canada.



Figure 4a France 1914-1919 
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Figure 4b Italy 1911-1923 
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Figure 4c Switzerland 1910-1923 
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Figure 4: Estimated Bayesian deviations of residual mortality rates with 50% credible intervals 

(boxes) and 1.5 times interquartile range (whiskers) for a) France 1914-1919; b) Italy 1911-1923; 

and c) Switzerland 1910-1923. 

 



Appendix A: 

Lexis Cohort Methodology and Details 

 

Traditional demographic analyses often rely on making a clear choice between using 

period and cohort analyses.  If we have data on death year and age at death, we have 

period data; if we have data on birth year and age we have cohort data (Fig. A1).  The 

difference arises because a person born in year t (say, 1918) who dies at age a (say, 60) 

could die in either year a+t or a+t+1 (1978 or 1979), depending on when the birthday fell 

in the birth year and how close the person made it to age a+1.  For example, someone 

dying at age 60.95 is still recorded as dying at age 60, but probably died in 1979.  When 

we wish to assess the effect of being born in a given year, we use cohort data; when we 

wish to assess the effect of events during a year on deaths across age-classes, we use 

period data. 

 

 
Fig. A1: Lexis diagram of what is known with cohort and age at death (“Cohort data” from the Human 

Mortality Database). 

 

The problem that can arise here is one of scale of the divisions among cohorts, 

periods, or age classes.  We might wish to detect a pattern with a clear threshold point 

that may be partway through a year, or with cyclical effects operating more rapidly than 

can be detected by dividing the data up by year.  So we’d like half-year cohorts (Fig. A2).  

If we have only period and cohort data by year, there is generally no way to get 

information on a finer scale.  However, sometimes we have Lexis data available, in 

which case both birth year and death year are present.  This provides some additional 

information that we should be able to utilize for detection of finer scale patterns (Fig. 

A3); the topic of this appendix is how to maximize the information we can gain by 

utilizing Lexis data. 
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Fig. A2: A Lexis diagram of what we’d like to know: half-year cohorts 

 

 
Fig. A3: Lexis diagram of what is known with cohort, year of death, and age at death (“Lexis data” from 

the Human Mortality Database). 

 

At first glance, it is not immediately apparent how we can get more information.  For 

example, our 1918-born 60-year-old can now be definitively assigned to, say, 1979 as a 

death year, but we cannot say with certainty when in 1918 she was born or when in 1979 

she died.  She could have been born early in 1918 (if she died even earlier in 1979) or 

have died late in 1979 (if she was born even later in 1918).  So, unlike our source data, 
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we cannot use absolute knowledge of birth or death at finer scale than a year; at best, we 

can get probabilistic information. 

However, the probabilistic information should be relatively accurate, especially if we 

make two assumptions: (1) that there are roughly equal numbers of births on each day of 

a year, and (2) that age-specific mortality rates are constant throughout an age-class (e.g., 

chance of dying at 60.0 is the same as at 60.9).  Of course, neither assumption is strictly 

true, but they are both approximately true, and as we will see their violation should not 

undermine the validity of our analysis under most circumstances. 

The basic insight that allows us to get probabilistic information is that a person born 

on Jan. 1 of a year is much more likely to die in the first than the second possible death 

year.  If our example subject were born Jan. 1, 1918 the only way she could die in 1979 at 

age 60 would be to die on Jan. 1 earlier in the day than the time she was born – highly 

unlikely relative to the probability of dying sometime in 1978.  Given that we only know 

her age at death to the year, we can calculate this probability.  If we know that she was 

born on Jan. 1, 1918 at 11:59 pm and died at age 60, there is a 1/365 chance that she died 

in 1981 and a 364/365 chance that she died in 1978 (again, assuming constant death rates 

from age 60.00 to age 60.99).  If she were born on Jan. 2 at 11:59 pm, these probabilities 

would shift to 2/365 and 363/365 respectively, and so on.  The probabilities always sum 

to 1, of course, and they are linear functions of birth date within a year (Fig. A4). 
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Figure A4: Probability of different Julian birthdays (i.e., days in the year numbered 1-365) for those dying 

in the earlier or later possible year for a given age and cohort 

 

All we know from our Lexis data is that someone died in the earlier or later of the two 

possible years.  However, even with just this knowledge, we can establish the probability 

distributions of date of birth for these two groups as the lines in Fig. A4.  As can be seen, 

these distributions overlap but are markedly different.  The mean date of birth for those 

who died in the first year is approximately May 1 (1/3 of the way through the year) and 



for those who died in the second year is Sept. 1 (2/3 of the way through the year).  We 

thus can effectively create two probabilistic “cohorts” with known mean birthdays, what 

we call “Lexis cohorts.”  If we conduct analyses on these Lexis cohorts, we can now see 

patterns that emerge at finer scales than one year (Fig. A5).  Our precision will of course 

not be as good as if we had two distinct cohorts born with certainty in the first and second 

half of the year (the precision is 75%, to be precise, Fig. A5), but if the effects we are 

looking for are strong enough we should still be able to detect them.  

 

 
Fig. A5: A Lexis diagram of the 75% overlap between the “Lexis cohorts” and true half-year cohorts. 

 

Relaxing the assumptions 

One assumption of the probability distributions for our two cohorts is that there is no 

seasonality to birth rates.  However, seasonality of births will not affect the probability of 

each year of death for a given birthday; it affects only the distribution of the birthdays.  

This is easily incorporated into a model. Fig. A6 uses a cosine function to illustrate the 

sort of effect seasonality could have on our probability distributions.  A less symmetric 

seasonality could bias the original estimates somewhat (Fig. A7).  In all cases, seasonality 

could affect estimates of mean birthday for the two cohorts, but should not be strong 

enough to change the fundamental difference between an earlier and a later cohort that 

are approximately 50% distinct. 
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Figure A6: Probability of different Julian birthdays (i.e., days in the year numbered 1-365) for those dying 

in the earlier or later possible year for a given age and cohort assuming seasonality of birth following a 

cosine function symmetrical around mid-year. 
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Figure A7: Probability of different Julian birthdays (i.e., days in the year numbered 1-365) for those dying 

in the earlier or later possible year for a given age and cohort assuming seasonality of birth following a sine 

function that is not symmetrical around mid-year. 

 

If we allow death rates to vary within an age class, there should be relatively little 

effect on our model except for infants.  Infants have much higher death rates in the first 



few months of their first year than in the last few months, and this approach should not be 

used on infant data.  However, at older ages death rates change little from year to year.  

For 60-year olds in Spain from 1916-1922, average death rate is 0.0108, and for 61-year-

olds is 0.0113, a difference of under 5% - small relative to the 75% overlap assumption 

we’ve already built into the model.  This should result in a systematic overestimation of 

birthday (since people are more likely to have died at an older age and thus to have been 

born earlier).  The effect is thus to slightly up-weight early births and down-weight late 

births (Fig.A8).  Again, we see that there should be no major effect on our ability to infer 

differences between the half-year cohorts based on differences between the Lexis cohorts. 
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Fig A8: Probability of different Julian birthdays (i.e., days in the year numbered 1-365) for those dying in 

the earlier or later possible year for a given age and cohort assuming a 5% difference in allocation of births 

between the beginning and end of the year, based on the slightly higher probability of death at older ages. 

 

 



Appendix B: A Selection of Sensitivity Analyses 
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Fig. B1a 
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Fig. B1b 
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Fig. B1c 
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Fig. B1d 

 

Figure B1: Estimated Bayesian deviations of residual mortality rates with 50% credible 

intervals (boxes) and 1.5 times interquartile range (whiskers) for the cohorts 1911-1923 

a) for ages 45-70 for all 24 countries; b) for ages 45-70 for 21 countries, excluding 

England and Wales, New Zealand, and Canada; c) for ages 60-80 for all 24 countries; and 

d) for ages 60-80 for 21 countries, excluding England and Wales, New Zealand, and 

Canada. 
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Fig B2a 
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Fig B2b 

 

Figure B2: Estimated Bayesian deviations of residual mortality rates with 50% credible 

intervals (boxes) and 1.5 times interquartile range (whiskers) for females only in the 

cohorts 1911-1923 a) for all 24 countries; and b) for 21 countries, excluding England and 

Wales, New Zealand, and Canada. 
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Figure B3: Estimated Bayesian deviations of residual mortality rates with 50% credible 

intervals (boxes) and 1.5 times interquartile range (whiskers) for the cohorts 1911-1923 

in the ten countries in our sample with low (<0.5%) mortality during World War II: 

Australia, Bulgaria, Canada, Denmark, New Zealand, Norway, Portugal, Sweden, 

Switzerland, and USA. 
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Figure B4: Estimated Bayesian deviations of residual mortality rates with 50% credible 

intervals (boxes) and 1.5 times interquartile range (whiskers) for the cohorts 1911-1923 

in the four countries in our sample with very low (<0.1%) mortality during World War II: 

Denmark, Portugal, Sweden, and Switzerland. 

 



Appendix C 

Adjacent-bias artifacts 

 

When we first started this project, we ran a series of preliminary analyses.  One such 

analysis was to create pseudo-cohorts from period data in the Human Mortality Database 

(HMD) by subtracting age-at-death from year-of-death.  While this is not a method we 

would seek to defend, it produced a striking result: in almost every country, mortality at 

older ages for the 1919 cohort was far lower than for any other cohort, and mortality for 

the 1920 cohort was far higher.  Our pseudo-cohorts differed from actual cohorts in that 

they (a) had a mean birthday at Jan. 1, not halfway through the year, (b) had a range of 

birthdays that spans two years, not one, and (c) had a higher concentration of birthdays 

close to the center of the range rather than a uniform distribution.  Based on this, we 

suspected that there was some protective effect of the flu on the very young in most cases 

(those born in the 1919 pseudo-cohort), but that those exposed very early in pregnancy 

(i.e., born in the second half of 1919 and thus likely in the 1920 pseudo-cohort) might 

have suffered severely.  We then discovered that this is a known artifact in the HMD 

(John R. Wilmoth, personal communication). 

It is easy for such an artifact to arise when there is some confusion as to the allocation 

of either deaths or exposures between adjacent cohorts.  For example, if a portion of the 

1920 population is mistakenly allocated to 1919 but the death counts remain the same, 

the 1919 cohort mortality rates will appear low while the 1920 rates appear high.  The 

biases should be of similar magnitude but in opposite directions.  While such patterns can 

also be due to real phenomena – for example, periods of low birth rates are often 

followed by a baby boom – in most cases it is unusual to have symmetrically opposed 

effects in adjacent cohorts.  This can thus serve as a check on data quality and the 

accuracy of the analysis: symmetrically opposed effects in adjacent cohorts should be 

treated with suspicion.  In the data presented here, we notice such effects in several cases.  

In the three Commonwealth countries England and Wales, New Zealand, and Canada, we 

see low mortality in the 1919 cohorts and high mortality in the 1920 cohort.  In 

Switzerland, we see high mortality for the spring 1919 cohort and low mortality for the 

fall 1919 cohort.  In Italy, we see high mortality in the spring 1921 cohort and low 

mortality in the fall 1921 cohort.  In the case of Italy, there is good reason to suspect just 

such an allocation: the birth-rate calibration we used was with birth rates averaged across 

the years 1921-23, and a deviation from the average in 1921 would produce just this 

effect. 

The trouble, of course, is that it is nearly impossible in such cases to demonstrate 

definitively whether the effect is real or an artifact.  Nonetheless, worry about such 

artifacts should not undermine the overall analysis too much: in most cases, strong effects 

should be apparent without potential artifacts, since it is rare for adjacent cohorts to show 

truly opposite trends.  The fact that we show few such effects can be considered 

substantial negative evidence. 

 


